唐菖蒲响应电子束转靶X射线辐照的生物学效应和辐射敏感性评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Responds of Electron Beam to Target X-Ray Irradiation on Bio-effect of Gladiolus gandavensis and Evaluation of Radiosensitivity
  • 作者:黎熠睿 ; 王丹 ; 湛晓蝶 ; 许程航 ; 徐龙水 ; 邓善文 ; 陈浩
  • 英文作者:LI Yirui;WANG Dan;ZHAN Xiaodie;XU Chenghang;XU Longshui;DENG Shanwen;CHEN Hao;School of Life Science and Engineering, Southwest University of Science and Technology;National Defense Key Discipline Laboratory of Nuclear Waste and Environmental Safety of Commission of Science Technology and Industry for National Defense,Southwest University of Science and Technology;Sichuan Radiation Mutation Technique Breeding Platform;Sichuan Atomic Energy Research Institute;
  • 关键词:唐菖蒲 ; 电子束转靶X射线 ; 生物学效应 ; 辐射敏感性
  • 英文关键词:Gladiolus gandavensis;;electron beam to target X-ray;;bio-effect;;radiosensitivity
  • 中文刊名:HNXB
  • 英文刊名:Journal of Nuclear Agricultural Sciences
  • 机构:西南科技大学生命科学与工程学院;西南科技大学国防科工委核废物和环境安全国防重点学科实验室;四川省辐射诱变技术育种平台;四川省原子能研究院;
  • 出版日期:2019-04-15 11:32
  • 出版单位:核农学报
  • 年:2019
  • 期:v.33
  • 基金:四川省辐射诱变育种技术平台项目(2016NZ0106);; 西南科技大学研究生创新基金资助(17ycx092)
  • 语种:中文;
  • 页:HNXB201906001
  • 页数:10
  • CN:06
  • ISSN:11-2265/S
  • 分类号:7-16
摘要
为探究不同电子束转靶X射线辐射处理对不同品种唐菖蒲VM_1、VM_2营养生长和生殖生长的影响,选用道兰、白色昌盛、湖岸、柏辽兹、贝多芬5个品种为试验材料,设置0(CK)、25、50、75、100 Gy共5个辐射处理,通过调查种球繁殖率、种球直径、发芽率、株高、叶面积、形态变化、开花等指标,研究电子束转靶X射线辐射对唐菖蒲的生物学效应和辐射敏感性。结果表明,25 Gy处理有利于种球的繁殖、膨大和萌发,可促进不同品种唐菖蒲的生长发育。随着辐射剂量的增加,辐射处理对唐菖蒲各品种VM_1种球发芽无明显影响,但显著抑制VM_2种球发芽;通过建立半致死剂量回归方程得出道兰、湖岸、柏辽兹、白色昌盛和贝多芬5个品种的半致死剂量分别为78.00、48.24、87.07、47.69和86.81 Gy,5个品种的唐菖蒲辐射敏感性由弱到强依次为柏辽兹<贝多芬<道兰<湖岸<白色昌盛。从生长发育来看,X射线辐射产生的损伤效应具有滞后性,VM_1植株受到的生长影响极小。随着辐射剂量的增加,75~100 Gy辐射处理对VM_2植株的抑制程度增大,且易诱发更多的植株形态变异,主要表现为叶片短小且互相套迭、叶连呈锥形、叶色变异等;电镜观察发现变异植株的叶片沟壑、凸起和气孔变化明显。此外,25 Gy处理后的柏辽兹和道兰VM_2可再次开花,且性状优于对照,但花粉辐射损伤严重。综合各指标得出,电子束转靶X射线对唐菖蒲生长发育具有低促高抑的作用。本研究结果为利用X射线辐射诱变育种方法培育高品质唐菖蒲品种提供了一定的理论依据。
        In order to explore the effects of different electron beam target X-ray irradiation treatments on the vegetative growth and reproductive growth of different varieties of gladiolus, VM_1 and VM_2 of five varieties, Dowland, White Prosper, Lakeland, Berlioz and Beethoven, were selected as the research material. Set 0(CK), 25, 50, 75, 100 Gy for five radiation treatments. By investigating reproductive rate, bulb size, germination rate, plant height, leaf area, leaf morphology, chlorophyll content and flowering characteristics of gladiolus and so on, explored the radiobiological effects and radiosensitivity of gladiolus on electron beam to target X-ray irradiation. The results showed that 25 Gy treatment was beneficial to the propagation, expansion and germination of the bulbs, which could promote the growth and development of different varieties of gladiolus. With the increase of dose, irradiation had no obvious effect on the germination of VM_1 bulbs of Gladiolus varieties, but significantly inhibited the germination of VM_2 bulbs. The fitting equation showed that the semi-lethal dose of each variety was obtained. The calculated half-lethal doses were 78.00(Dowland), 48.24(Lakeland), 87.07(Berlioz), 47.69(white prosper) and 86.81 Gy(Beethoven). The radiation sensitivity of five varieties of gladiolus from weak to strong was Berlioz
引文
[1] 刘晨, 高明伟, 刘超, 何俊娜, 吴健, 僧珊珊, 钟雄辉, 吴晨雨, 张凤勤, 义鸣放. 基于表型和SRAP标记的唐菖蒲品种遗传多样性分析[J]. 中国农业大学学报, 2016, 21(5):57-65
    [2] 刘久东, 刘伟, 周厚高, 和兆荣. 唐菖蒲育种的研究进展[J]. 北方园艺, 2006(4):74-75
    [3] Ibrahim R, Ahmad Z, Salleh S, Salleh S, Hassan A A, Ariffin S. Mutation breeding in ornamentals[M]//Handbook of Plant Breeding. Germany: Springer, 2018
    [4] Han B, Gu J, Zhao L, Guo H, Xie Y, Zhao S, Song X, Han L, Liu L. Factors affecting the radiosensitivity of hexaploid wheat to γ-irradiation: Radiosensitivity of hexaploid wheat (Triticum aestivum L. )[J]. PLoS One, 2016, 11(8):e0161700
    [5] Mondal S, Petwal Ⅴ C, Badigannavar A M, Bhad P G, Verma Ⅴ P, Goswami S G, Dwivedi J. Electron beam irradiation revealed genetic differences in radio-sensitivity and generated mutants in groundnut (Arachis hypogaea L. )[J]. Applied Radiation & Isotopes, 2017, 122:78-83
    [6] 包建忠, 李风童, 孙叶, 刘春贵, 马辉, 张甜, 陈秀兰. 60Co-γ射线辐照大花君子兰种子对其萌发特性其开花性状的影响[J]. 核农学报, 2013, 27(11):1681-1685
    [7] Zge ?, ?imen A. Applications of Ionizing Radiation in Mutation Breeding[M]. New Insights on Gramma Rays. Germany: InTech, 2017
    [8] Ari E, Djapo H, Mutlu N, Gurbuz E, Karaguzel O. Creation of variation through gamma irradiation and polyploidization in Vitex agnus- castus, L[J]. Scientia Horticulturae, 2015, 195:74-81
    [9] Lestari E G. Combination of somaclonal variation and mutagenesis for crop improvement[J]. Jurnal Agrobiogen, 2016, 8(1):38-34
    [10] 刘春贵, 李风童, 孙叶, 袁媛, 包建忠, 陈秀兰. 60Co-γ射线对路易斯安那鸢尾种子的辐射效应研究[J]. 核农学报, 2018, 32(1): 1-7
    [11] Datta S K. Ornamental Plants: Role of Mutation[M]. India: Daya Books, 1997
    [12] 乔勇. 60Co-γ射线辐照后不同唐菖蒲品种M2代生物学特性的变化及突变体检测研究[D]. 杨凌:西北农林科技大学, 2008
    [13] 张志伟, 王丹, 闻方平, 张晓雪. 电子束辐照对唐菖蒲M1代花粉母细胞的影响[J]. 原子能科学技术, 2008, 42(11):1053-1056
    [14] Patil S D, Dhaduk B K. Effect of gamma radiation on vegetative and floral characters of commercial varieties of gladiolus (Gladiolus hybrida L. )[J]. Journal of Ornamental Horticulture, 2009, 12(4): 232-238
    [15] Yamaguchi H. Mutation breeding of ornamental plants using ion beams[J]. Breeding Science, 2018, 68(1):17086
    [16] Kazi N A. Mutation breeding in flower crops[J]. Aisan Journal of Multidisciplinary Studies, 2015, 3(3):2348-7186
    [17] 时磊. 电子束轰击铁靶X射线发射率的MCNP计算[J]. 化学工程与装备, 2012(7):39-40
    [18] 贾蓉, 苏锋涛, 胡步荣. 重离子的辐射生物效应及其在生命科学中的应用[J]. 生物技术通报, 2018(1):67-78
    [19] 王海宏, 孔秋莲, 戚文元, 岳玲, 陈志军, 包英姿, 徐赟. 电子束γ射线和X射线辐照对短小芽孢杆菌杀菌效果的研究[J]. 农产品加工(学刊), 2014(24):15-17
    [20] 杨斌, 唐卫东, 张玥, 徐涛, 靳健乔, 叶明旸. 使用7.5 MeV X射线进行食品辐照的放射性安全研究[C]// 中国核学会. 中国核科学技术进展报告. 北京: 原子能出版社,2011:31-36
    [21] 石景荪, 左启华, 张涛, 张立峰, 边秀举. 图像处理技术在唐菖蒲叶面积测定中的应用[J]. 中国农学通报, 2007, 23(5):456-460
    [22] 王学奎, 黄见良. 植物生理生化实验原理与技术[M]. 北京:高等教育出版社, 2015
    [23] 王静, 郭素娟, 徐丞. 60Co-γ辐照燕山早丰接穗生物效应研究[J]. 核农学报, 2018, 32(4):625-632
    [24] 周亚倩, 姚娜, 魏莉, 李潞滨, 刘蕾. 60Co-γ射线对树兰蒴果辐照生物学效应研究[J]. 核农学报, 2017, 31(9):1693-1699
    [25] Cammaerts M, Johansson O. Effect of man-made electromagnetic fields on common Brassicaceae Lepidium sativum (cress d′Alinois) seed germination: A preliminary replication study[J]. Phyton, International Journal of Experimental Botany, 2016, 84(1): 132-137
    [26] Jan S, Parween T, Siddiqi T O, Mahmooduzzafar. Anti-oxidant modulation in response to gamma radiation induced oxidative stress in developing seedlings of Psoralea corylifolia L.[J]. Journal of Environmental Radioactivity, 2012, 113(6):142
    [27] Liu H, Hu D, Dong C, Fu Y, Liu G, Qin Y, SunY, Liu D, Li L, Liu H. Low-dose ionizing radiation limitations to seed germination: Results from a model linking physiological characteristics and developmental-dynamics simulation strategy[J]. Journal of Theoretical Biology, 2017, 427:10-16
    [28] Albokari M, Alzahrani S, Alsalman A. Radiosensitivity of some local cultivars of wheat (Triticum Aestivum L. ) to gamma irradiation[J]. Bangladesh Journal of Botany, 2012, 41(1):1-5
    [29] 史玉敏, 罗先真, 严恒, 陈洪国. 60Co-γ射线辐照对桂花枝条生长和生理指标的影响及耐辐照性评价[J]. 核农学报, 2017, 31(2):350-356
    [30] 于虹漫, 陈宗瑜. 花卉的辐射敏感性[J]. 北方农业学报, 2004(1):34-34
    [31] 李婧嫄. 60Co-γ射线对寒兰根状茎的辐射诱变效应研究[D]. 南昌: 南昌大学, 2011
    [32] 任少雄, 王丹, 李卫锋, 苏乾治, 苏军, 彭林华, 王熙. 60Co-γ射线辐射唐菖蒲鳞茎诱变育种试验[J]. 福建林业科技, 2006, 33(2):34-36
    [33] 耿兴敏, 王良桂, 李娜, 杨秀莲. 60Co-γ辐射对桂花种子萌发及幼苗生长的影响[J]. 核农学报, 2016, 30(2):216-223
    [34] Sevriukova O, Kanapeckaite A, Lapeikaite Ⅰ, Kisnieriene Ⅴ, Ladygiene R, Sakalauskas Ⅴ. Charophyte electrogenesis as a biomarker for assessing the risk from low-dose ionizing radiation to a single plant cell[J]. Journal of Environmental Radioactivity, 2014, 136(11):10-15
    [35] Huang R, Chen Y C. The hormesis effects of low-dose 60Co gamma irradiation on high-temperature tolerance in cultivated Sargassum horneri(Fucales, Phaeophyceae)[J]. Journal of Applied Phycology, 2018, 30(6): 3395-3404
    [36] Sau S, Datta P, Sarkar T. Impact of low doses of gamma irradiation on off-season guava at ambient storage condition[J]. International Journal of Current Microbiology & Applied Sciences, 2018, 7(1):295-307
    [37] Singh B, Datta P S. Effect of low dose gamma irradiation on plant and grain nutrition of wheat[J]. Radiation Physics & Chemistry, 2010, 79(8):819-825
    [38] 李风童, 包建忠, 孙叶, 刘春贵, 马辉, 张甜, 陈秀兰. 60Co-γ射线辐照德国鸢尾杂交种子的生物效应[J]. 核农学报, 2017, 31(8):1469-1474
    [39] Qureshi S T, Memon S A, Abassi A R, Sial M, Bughio F A. Radiofrequency radiations induced genotoxic and carcinogenic effects on chickpea (Cicer arietinum L. ) root tip cells[J]. Saudi Journal of Biological Sciences, 2017, 24(4):883
    [40] Khursheed S, Raina A, Parveen K, Khan S. Induced phenotypic diversity in the mutagenized populations of faba bean using physical and chemical mutagenesis[J]. Journal of the Saudi Society of Agricultural Sciences, 2016, 10(3):1-7
    [41] Fina J, Casadevall R, Abdelgawad H, Prinsen E, Markakis M, Beemster G, Casati P. UV-B inhibits leaf growth through changes in growth regulating factors and gibberellin levels[J]. Plant Physiology, 2017, 174(2):1110-1126
    [42] Cechin Ⅰ, Gonzalez G C, Corniani N. The sensitivity of sunflower (Helianthus annuus L. ) plants to UV-B radiation is altered by nitrogen status[J]. Ciencia Rural, 2018, 48(2):e20170369

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700