逆电渗析法热-电转换系统循环工质匹配准则
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Methodology of assessing working mediums availability for a novel heat-power conversion system with reverse electrodialysis technology
  • 作者:吴曦 ; 徐士鸣 ; 吴德兵 ; 刘欢 ; 陈顺权
  • 英文作者:WU Xi;XU Shiming;WU Debing;LIU Huan;CHEN Shunquan;Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education,Dalian University of Technology;Guangdong Key Laboratory of Membrane Material and Membrane Separation,Guangzhou Institute of Advanced Technology,Chinese Academy of Sciences;
  • 关键词:吸收 ; 溶剂 ; 二元混合物 ; 逆向电渗析 ; 低品位热能
  • 英文关键词:absorption;;solvents;;binary mixture;;reverse electrodialysis;;low-grade heat energy
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:大连理工大学能源与动力学院海洋能源利用与节能教育部重点实验室;广州中国科学院先进技术研究所广东省膜材料与膜分离重点实验室;
  • 出版日期:2016-12-15
  • 出版单位:化工学报
  • 年:2016
  • 期:v.67
  • 基金:国家自然科学基金项目(51606024,51376032);; 中国博士后科学基金资助项目(2016M591427);; 广东省膜材料与膜分离重点实验室开放课题(广州中国科学院先进技术研究所)(GIAT2016061404)~~
  • 语种:中文;
  • 页:HGSZ2016S2046
  • 页数:7
  • CN:S2
  • ISSN:11-1946/TQ
  • 分类号:334-340
摘要
将开式逆向电渗析法浓差能发电技术原理与吸收式制冷/热泵系统循环原理相结合,提出了一种全新的闭式热-电循环转换方法,且发现工作介质(溶质与溶剂混合物)是影响该系统能量转换效率的关键因素之一。以9种溶质(一价无机盐)和17种溶剂(标准沸点温度在40~150℃)为研究对象,通过分析工质的13项关键物性参数(沸点温度、汽化潜热、比热容、溶解度、偏心因子、偶极矩、相对介电常数、电导率、黏度、热导率、燃爆极限、自动点火温度及毒性),建立了从热力学性质、电化学性质、输运特性、危险性等多角度来综合评价热-电循环转换系统工质匹配性的准则,并据此推断无机盐-溶解剂-调节剂三元混合物极具发展潜力。
        A novel closed type heat-power conversion system was proposed by integrating the essential principles of both reverse electrodialysis(RED) power generation technology and absorption refrigeration/heating technology.Besides,the working mediums solutions(consisted of solute and solvent)were found to be one of the vital factors for energy conversion efficiency of this new power generation system.Altogether,nine solutes(monovalent inorganic salts)and seventeen solvents(with the normal bubble point temperature within 40—150℃)have been selected as the focused substances,and their thirteen crucial properties(bubble point temperature,latent heat of vaporization,specific heat capacity,solubility,acentric factor,dipole moment,relative dielectric constant,electric conductance,viscosity,thermal conductance,auto-ignition temperature,flammability limit,and toxicity),have beencompared and analyzed.Further,methodology of comprehensively assessing the availability of working mediums for this new heat-power conversion system has been established after finishing a series of discussions that were carried out from the aspects of their fundamental thermophysical properties,transport features,electrochemistry characteristics,and dangerousness.Finally,it is ternary type working mediums that consisted of inorganic salt-solute-modifier,are deduced to be in bright prospect.
引文
[1]QUOILIN S,VAN DEN BROEK M,DECLAYE S,et al.Techno-economic survey of organic rankine cycle(ORC)systems[J].Renewable and Sustainable Energy Reviews,2013,22:168-186.
    [2]ZIVIANI D,BEYENE A,VENTURINI M.Advances and challenges in ORC systems modeling for low grade thermal energy recovery[J].Applied Energy,2014,121:79-95.
    [3]PATTLE R E.Production of electric power by mixing fresh and salt water in the hydroelectric pile[J].Nature,1954,174:660-660.
    [4]DLUGOLECKI P,NYMEIJER K,METZ S,et al.Current status of ion exchange membranes for power generation from salinity gradients[J].Journal of Membrane Science,2008,319:214-222.
    [5]VERMASS D A,SAAKES M,NIJMEIJER K.Power generation using profiled membranes in reverse electrodialysis[J].Journal of Membrane Science,2011,385/386:234-242.
    [6]DANIILIDIS A,HERBER R,VERMASS D A.Upscale potential and financial feasibility of a reverse electrodialysis power plant[J].Applied Energy,2014,119:257-265.
    [7]HONG J G,ZHANG W,LUO J.Modeling of power generation from the mixing of simulated saline and freshwater with a reverse electrodialysis system:the effect of monovalent and multivalent ions[J].Applied Energy,2013,110:244-251.
    [8]TEDESCO M,CIPOLLINA A,TAMBURINI A,et al.A simulation tool for analysis and design of reverse electrodialysis using concentrated brines[J].Chemical Engineering Research and Design,2015,93:441-456.
    [9]邓会宁,田明,杨秀丽,等.反电渗析法海洋盐差电池的结构优化与能量分析[J].化工学报,2015,66(5):1919-1924DENG H N,TIAN M,YANG X L,et al.Structure optimization and energy analysis of reverse electrodialysis to recover energy of oceanic salinity gradient[J].CIESC Journal,2015,66(5):1919-1924.
    [10]赵严,胡梦青,阮慧敏,等.逆向电渗析法海水盐差能发电工艺研究[J].过滤与分离,2015,25(1):5-8.ZHAO Y,HU M Q,RUAN H M,et al.Study on salinity gradient power generation by reverse electrodialysis[J].Journal of Filtration and Separation,2015,25:5-8.
    [11]徐士鸣,吴曦,吴德兵.一种新型低品位热能发电方法及装置:201510694726.4[P].2015-10-21.XU S M,WU X,WU D B.A new method of conversing low grade temperature heat to power:201510694726.4[P].2015-10-21.
    [12]National Institute of Standards and Technology.NIST Chemistry Webbook.[EB/OL][2016-04-01]http://webbook.nist.gov/chemistry/
    [13]LEMMON E W,HUBER M L,MCLINDEN M O.Reference Fluid Thermodynamic and Transport Properties(versions 9.0)[M].U.S.:National Institute of Standards and Technology,2010.
    [14]KIM K B,LEE J W,KIM J S,et al.Heat capacity measurement and cycle simulation of the trifluoroethanol(TFE)+quinoline mixture as a new organic working fluid used in absorption heat pump[J].Korean Journal of Chemical Engineering,2003,20(4):762-767.
    [15]PINHO S P,MACEDO E A.Solubility of NaCl,NaBr,and KCl in water,methanol,ethanol,and their mixed solvents[J].J.Chem.Eng.Data,2005,50(1):29-32.
    [16]PAWAR R R,AHER C S,PAGAR J D,et al.Solubility,density and solution thermodynamics of NaI in different pure solvents and binary mixtures[J].J.Chem.Eng.Data,2012,57(12):3563-3572.
    [17]LI M Y,CONSTANTINESCU D,WANG L S,et al.Solubilities of NaCl,KCl,LiCl,and LiBr in methanol,ethanol,acetone,and mixed solvents and correlation using the LIQUAC Model[J].Ind.Eng.Chem.Res.,2010,49(10):4981-4988.
    [18]LI M Y,WANG L S,WANG K P,et al.Experimental measurement and modeling of solubility of LiBr and LiNO3in methanol,ethanol,1-propanol,2-propanol and 1-butanol[J].Fluid Phase Equilibria,2011,307(1):104-109.
    [19]刘光启,马连湘,刘杰.化学化工物性数据手册:无机卷[M].北京:化学工业出版社,2002.LIU G Q,MA L X,LIU J.Handbook of Properties of Chemicals:Inorganic Substances[M].Beijing:Chemical Industry Press,2002.
    [20]刘光启,马连湘,项曙光.化学化工物性数据手册[M]:有机卷.北京:化学工业出版社,2013.LIU G Q,MA L X,XIANG S G.Handbook of Properties of Chemicals:Organic Substances[M].Beijing:Chemical Industry Press,2013.
    [21]SPEIHT J G.LANGE’s Handbook of Chemistry[M].6th ed.New York:MCGRAW-HILL,2005.
    [22]Website of calculating substance properties named AP1700:[EB/OL][2016-04-01]http://www.ap1700.com/index.html.
    [23]LIDE D R.CRC Handbook of Chemistry and Physics[M].84th ed.Florida:CRC Press,2003-2004.
    [24]DEAN J A.Lang’s Handbook of Chemistry[M].15th ed.New York:McGraw-Hill,1999.
    [25]北京东方创想科技有限公司.物料安全查询系统[EB/OL].[2016-04-01].SOMSDS.com.Beijing Orient Transit Co.Database of Material Safety Data Sheet[EB/OL].[2016-04-01].SOMSDS.com.
    [26]DrugFuture.Chemical Toxicity Database.[EB/OL]http://www.drugfuture.com/toxic/
    [27]Occupational Safety and Health Administration.OSHA PEL Project Documentation[EB/OL].1988.http://www.cdc.gov/niosh/pel88/npelname.html.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700