氯化锂溶液为工质的溶液浓差发电实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental study of solution concentration difference power generation with lithium chloride solution as working fluid
  • 作者:徐士鸣 ; 吴德兵 ; 吴曦 ; 胡军勇 ; 刘欢 ; 张红军 ; 陈顺权 ; 陈静
  • 英文作者:XU Shiming;WU Debing;WU Xi;HU Junyong;LIU Huan;ZHANG Hongjun;CHEN Shunquan;CHEN Jing;Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education,School of Energy and Power Engineering,Dalian University of Technology;Guangdong Key Laboratory of Membrane Material and Membrane Separation,Guangzhou Institute of Advanced Technology,Chinese Academy of Sciences;
  • 关键词:低品位热能 ; 氯化锂溶液 ; 逆向电渗析电池 ; 浓差发电
  • 英文关键词:low-grade heat;;lithium chloride solution;;reverse electrodialysis cells;;concentration difference power generation
  • 中文刊名:DLLG
  • 英文刊名:Journal of Dalian University of Technology
  • 机构:大连理工大学能源与动力学院海洋能源利用与节能教育部重点实验室;广州中国科学院先进技术研究所广东省膜材料与膜分离重点实验室;
  • 出版日期:2017-07-24 10:55
  • 出版单位:大连理工大学学报
  • 年:2017
  • 期:v.57
  • 基金:国家自然科学基金资助项目(51606024);; 广东省膜材料与膜分离重点实验室开放课题资助项目(GIAT2016061404);; 中央高校基本科研业务费专项资金资助项目(DUT17JC31)
  • 语种:中文;
  • 页:DLLG201704002
  • 页数:8
  • CN:04
  • ISSN:21-1117/N
  • 分类号:9-16
摘要
利用配制的氯化锂溶液作为工作介质,通过实验研究稀溶液和浓溶液浓度变化对逆向电渗析电池组(REDCs)开路电压、内阻以及功率密度等电池特性参数的影响.研究结果表明,由10个电池单元构成的REDCs在所研究的浓度范围内,最大开路电压为1.88V,最大功率密度为1.67 W/m~2.电池的开路电压随稀溶液浓度增大而降低,而随浓溶液浓度增大出现先增后降的趋势.电池内阻随浓、稀溶液的浓度增大而降低.电池的端电压与功率密度受电流影响.随电流增大,端电压呈线性下降的趋势,而功率密度变化却呈上凸的二次曲线.当电路总电阻为电池内阻两倍时,电池功率密度达到最大值.
        Through experiments,the influences of concentration variations of both weak and strong solutions on the characteristic parameters of reverse electrodialysis cells(REDCs),such as open circuit voltage(OCV),internal resistance and power density,are explored,in which lithium chloride solution prepared is used as working fluid.The results show that the maximal OCV and power density of the homemade REDCs with 10 cells are 1.88 V and 1.67 W/m~2 in the range of experimental concentration,respectively.The OCV of the REDCs reduces with the increase of weak solution concentration,but increases first and then reduces with the increase of strong solution concentration.The internal resistances of the REDCs reduce with the increase of both weak and strong solution concentrations.The terminal voltage and power density of the REDCs are affected by current.With the increase of current,the terminal voltage drops linearly but the variations of power density appear a convex quadratic curve.The power density of the REDCs reaches maximum when the total circuit resistance is twice as big as the internal resistance of the REDCs.
引文
[1]连红奎,李艳,束光阳子,等.我国工业余热回收利用技术综述[J].节能技术,2011,29(2):123-128.LIAN Hongkui,LI Yan,SHU Guangyangzi,et al.An overview of domestic technologies for waste heat utilization[J].Energy Conservation Technology,2011,29(2):123-128.(in Chinese)
    [2]王华,王辉涛.低温余热发电有机朗肯循环技术[M].北京:科学出版社,2010.WANG Hua,WANG Huitao.Organic Rankine Cycle Power Generation for Energy Recovery[M].Beijing:Science Press,2010.(in Chinese)
    [3]HUNG T C,WANG S K,KUO C H,et al.A study of organic working fluids on system efficiency of an ORC using low-grade energy sources[J].Energy,2010,35:1403-1411.
    [4]KALINA A I.Combined-cycle system with novel bottoming cycle[J].ASME Journal of Engineering for Gas Turbines and Power,1984,106(4):737-742.
    [5]ORGAN A J.Thermodynamics and Gas Dynamics of the Stirling Cycle Machine[M].New York:Cambridge University Press,2010.
    [6]CHEN Huijuan,GOSWAMI D Y,STEFANAKOS E K.A review of thermodynamic cycles and working fluids for the conversion of low-grade heat[J].Renewable&Sustainable Energy Reviews,2010,14(9):3059-3067.
    [7]WEI Donghong,LU Xuesheng,LU Zhen,et al.Dynamic modeling and simulation of an organic Rankine cycle(ORC)system for waste heat recovery[J].Applied Thermal Engineering,2008,28(10):1216-1224.
    [8]TCHANCHE B F,LAMBRINOS G,FRANGOUDAKIS A,et al.Low-grade heat conversion into power using organic Rankine cycles—A review of various applications[J].Renewable and Sustainable Energy Reviews,2011,15:3963-3979.
    [9]徐士鸣,吴曦,吴德兵.一种新型低品位热能发电方法及装置:201510694726.4[P].2015-10-21.XU Shiming,WU Xi,WU Debing.A novel method and device of low grade thermal energy power generation:201510694726.4[P].2015-10-21.(in Chinese)
    [10]徐士鸣,吴曦,吴德兵,等.从吸收制冷到逆向电渗析发电——溶液浓差能应用新技术[C]//第九届全国制冷空调新技术研讨会论文集.洛阳:中国制冷学会,2016.XU Shiming,WU Xi,WU Debing,et al.Salinity gradient power technology and application from absorption refrigeration to reverse electrodialysis power generation[C]//Proceedings of the 9th National Conference,New Technology for Refrigeration and Air Conditioning.Luoyang:Chinese Association of Refrigeration,2016.(in Chinese)
    [11]LUO Xi,CAO Xiaoxin,MO Yinghui,et al.Power generation by coupling reverse electrodialysis and ammonium bicarbonate:Implication for recovery of waste heat[J].Electrochemistry Communications,2012,19:25-28.
    [12]罗希,梁鹏,曹效鑫,等.碳酸氢铵-反向电渗析模块构型研究[J].膜科学与技术,2013,33(6):6-12.LUO Xi,LIANG Peng,CAO Xiaoxin,et al.The configuration of reverse electrodialysis stacks utilizing ammonium bicarbonate solutions[J].Membrane Science and Technology,2013,33(6):6-12.(in Chinese)
    [13]KIM D H,PARK B H,KWON K,et al.Modeling of power generation with thermolytic reverse electrodialysis for low-grade waste heat recovery[J].Applied Energy,2017,189:201-210.
    [14]MCGINNIS R L,MCCUTCHEON J R,ELIMELECH M.A novel ammonia-carbon dioxide osmotic heat engine for power generation[J].Journal of Membrane Science,2007,305(1/2):13-19.
    [15]MCGINNIS R L,ELIMELECH M.Energy requirements of ammonia-carbon dioxide forward osmosis desalination[J].Desalination,2007,207(1/2/3):370-382.
    [16]张永昭,艾宁,计建炳.碳酸氢铵水溶液热分解性能的研究[J].广州化工,2011,39(8):56-57,61.ZHANG Yongzhao,AI Ning,JI Jianbing.Dissociation of ammonium acid carbonate after CO2sequestration by aqueous ammonia method[J].Guangzhou Chemical Industry,2011,39(8):56-57,61.(in Chinese)
    [17]CARATI A,MARINO M,BROGIOLI D.Thermodynamic study of a distiller-electrochemical cell system for energy production from low temperature heat sources[J].Energy,2015,93:984-993.
    [18]徐士鸣,刘欢,吴曦,等.KI/LiCl/LiBr-水-乙醇三元体系电导率特性研究[J].大连理工大学学报,2017,57(1):23-28.XU Shiming,LIU Huan,WU Xi,et al.Study of conductivity characteristics of ternary solutions KI/LiCl/LiBr-water-ethanol[J].Journal of Dalian University of Technology,2017,57(1):23-28.(in Chinese)
    [19]PATTLE R E.Production of electric power by mixing fresh and salt water in the hydroelectric pile[J].Nature,1954,174(4431):660.
    [20]POST J W,HAMELERS H V M,BUISMAN C J N.Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system[J].Environmental Science&Technology,2008,42(15):5785-5790.
    [21]HONG J G,ZHANG Bopeng,GLABMAN S,et al.Potential ion exchange membranes and system performance in reverse electrodialysis for power generation:A review[J].Journal of Membrane Science,2015,486:71-88.
    [22]DANIILIDIS A,VERMAAS D A,HERBER R,et al.Experimentally obtainable energy from mixing river water,seawater or brines with reverse electrodialysis[J].Renewable Energy,2014,64:123-131.
    [23]邓会宁,田明,杨秀丽,等.反电渗析法海洋盐差电池的结构优化与能量分析[J].化工学报,2015,66(5):1919-1924.DENG Huining,TIAN Ming,YANG Xiuli,et al.Structure optimization and energy analysis of reverse electrodialysis to recover energy of oceanic salinity gradient[J].CIESC Journal,2015,66(5):1919-1924.(in Chinese)
    [24]吴曦,徐士鸣,吴德兵,等.逆电渗析法热-电转换系统循环工质匹配准则[J].化工学报,2016,67(z2):326-332.WU Xi,XU Shiming,WU Debing,et al.Methodology of assessing working mediums availability for a novel heat-power conversion system with reverse electrodialysis technology[J].CIESC Journal,2016,67(z2):326-332.(in Chinese)
    [25]BUKER M S,RIFFAT S B.Recent developments in solar assisted liquid desiccant evaporative cooling technology-A review[J].Energy and Buildings,2015,96:95-108.
    [26]LI Xiuwei,ZHANG Xiaosong,QUAN Shuo.Single-stage and double-stage photovoltaic driven regeneration for liquid desiccant cooling system[J].Applied Energy,2011,88(12):4908-4917.
    [27]王琴,吴薇,刘松松,等.内热型与绝热型溶液再生器再生过程性能[J].化工学报,2016,67(z1):186-194.WANG Qin,WU Wei,LIU Songsong,et al.Performance of regeneration processes of internally heated regenerator and adiabatic regenerator[J].CIESC Journal,2016,67(z1):186-194.(in Chinese)
    [28]JIA Zhijun,WANG Baoguo,SONG Shiqiang,et al.Blue energy:Current technologies for sustainable power generation from water salinity gradient[J].Renewable&Sustainable Energy Reviews,2014,31:91-100.
    [29]VERMAAS D A,VEERMAN J,YIP N Y,et al.High efficiency in energy generation from salinity gradients with reverse electrodialysis[J].ACS Sustainable Chemistry&Engineering,2013,1(10):1295-1302.
    [30]VERMAAS D A,SAAKES M,NIJMEIJER K.Power generation using profiled membranes in reverse electrodialysis[J].Journal of Membrane Science,2011,385(1/2):234-242.
    [31]GALAMA A H,VERMAAS D A,VEERMAN J,et al.Membrane resistance:The effect of salinity gradients over a cation exchange membrane[J].Journal of Membrane Science,2014,467:279-291.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700