电流与浓差对逆电渗析电堆内质量传递的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of current density and concentration difference between solutions on mass transfer in reverse electro-dialysis stack
  • 作者:徐士鸣 ; 张凯 ; 吴曦 ; 吴德兵 ; 胡军勇 ; 何其琛 ; 金东旭 ; 王平
  • 英文作者:XU Shiming;ZHANG Kai;WU Xi;WU Debing;HU Junyong;HE Qichen;JIN Dongxu;WANG Ping;Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education,School of Energy and Power Engineering,Dalian University of Technology;
  • 关键词: ; 逆电渗析 ; 传质 ; 溶液 ; 电流 ; 浓差
  • 英文关键词:membrane;;reverse electrodialysis;;mass transfer;;solution;;current;;concentration difference
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:大连理工大学能源与动力学院海洋能源利用与节能教育部重点实验室;
  • 出版日期:2018-07-12 11:45
  • 出版单位:化工学报
  • 年:2018
  • 期:v.69
  • 基金:国家自然科学基金项目(51776029,51606024)~~
  • 语种:中文;
  • 页:HGSZ201810009
  • 页数:10
  • CN:10
  • ISSN:11-1946/TQ
  • 分类号:76-85
摘要
以氯化钠溶液作为工质情况下,通过改变逆电渗析电堆输出电流和溶液浓差,对由5对Selemion型离子交换膜(IEMs)单元电池所构成的实验用RED电堆进行堆内质量传递规律的实验研究。研究结果发现,IEMs选择性系数(α)、溶剂透膜渗透速率(vw)、溶质透膜迁移通量(JNaCl)和同价离子透膜扩散率(DNaCl)均受电堆电流密度和溶液浓差的影响。当溶液浓差增大时,α降低,而vw、JNaCl和DNaCl均增大;当电流密度增大时,α和vw降低,JNaCl和DNaCl增大。
        Taking the NaCl aqueous solution as the working fluid, the mass transfer characteristic of which in a reverse electro-dialysis(RED) stack have been tested under the conditions of changing the current density and concentration difference between solutions through the RED stack. The RED stack used in the experiments was composed of 5 unit membrane cells with Selemion type of ion exchange membranes(IEMs). The results showed that the selectivity coefficient(α), solvent permeability ratio(vw), solute ion transport flux(JNaCl) and co-ion diffusion rate(DNaCl) of IEMs were affected by stack current density and solution concentration. When the concentration difference increases, the α reduces, but the vw, JNaCl and DNaCl increase. With the increase of the electric current density exported by the RED stack, the α and vw reduce, but the JNaCl and DNaCl increase.
引文
[1]KHALIGH A,ONAR O C.Energy Harvesting:Solar,Wind,and Ocean Energy Conversion Systems[M].Boca Raton:CRC Press:2009.
    [2]陈霞,蒋晨啸,汪耀明,等.反向电渗析在新能源及环境保护应用中的研究进展[J].化工学报,2018,69(1):188-202.CHEN X,JIANG C X,WANG Y M,et al.Advances in reverse electrodialysis and its applications on renewable energy&environment protection[J].CIESC Journal,2018,69(1):188-202.
    [3]STERNBERG R.Hydropower’s future,the environment,and global electricity systems[J].Renewable and Sustainable Energy Reviews,2010,14:713-723.
    [4]THAMSIRIROJ T,MURPHY J D.A critical review of the applicability of biodiesel and grass biomethane as biofuels to satisfy both biofuel targets and sustainability criteria[J].Apply Energy,2011,88(4):1008-1019.
    [5]PATTLE R.Production of electric power by mixing fresh and salt water in the hydroelectric pile[J].Nature,1954,174:660.
    [6]邓会宁,田明,杨秀丽,等.反电渗析法海洋盐差电池的结构优化与能量分析[J].化工学报,2015,66(5):1919-1924.DENG H N,TIAN M,YANG X L,et al.Structure optimization and energy analysis of reverse electrodialysis to recover energy of oceanic salinity gradient[J].CIESC Journal,2015,66(5):1919-1924.
    [7]WICK G L,SCHMITT W R.Prospects for renewable energy from sea[J].Marine Technology Society Journal,1977,11(5):16-21.
    [8]徐士鸣,吴曦,吴德兵,等,从吸收制冷到逆向电渗析发电--溶液浓差能应用新技术[J].制冷技术,2017,37(2):8-13.XU S M,WU X,WU D B.et al.From absorption refrigeration to reverse electrodialysis power generation:a novel application technology for solution concentration gradient[J].Chinese Journal of Refrigeration Technology,2017,37(2):8-13.
    [9]POST J W,VEERMAN J,HAMELERS H V M,et al.Salinity-gradient power:evaluation of pressure-retarded osmosis and reverse electrodialysis[J].Journal of Membrane Science,2007,288(1/2):218-230.
    [10]VEERMAN J,SAAKES M,METZ S,et al.Reverse electrodialysis:evaluation of suitable electrode systems[J].Journal of Applicational Electrochemistry,2010,40(8):1461-1474.
    [11]BROGIOLI D,ZHAO R,BIESHEUVEL P.A prototype cell for extracting energy from a water salinity difference by means of double layer expansion in nanoporous carbon electrodes[J].Energy Environment Science,2011,4(3):772-777.
    [12]徐士鸣,吴曦,冷强.一种利用低品位热降解高浓有机废水方法:201711384061.2[P].2017-12-20.XU S M,WU X,LENG Q.A degradation method for high concentration organic waste water powered by low-grade thermal energy:201711384061.2[P].2017-12-20.
    [13]CIPOLLINA A,MICALE G.Sustainable Energy from Salinity Gradients[M].Duxford:Woodhead Publishing,2016.
    [14]VERMAAS D A,SAAKES M,NIJMEIJER K.Doubled power density from salinity gradients at reduced inter-membrane distance[J].Environmental Science&Technology,2011,45(16):7089-7095.
    [15]VEERMAN J,SAAKES M,METZ S,et al.Reverse electrodialysis:performance of a stack with 50 cells on the mixing of sea and river water[J].Journal of Membrane Science,2009,327(1):136-144.
    [16]VEERMAN J,SAAKES M,METZ S J,et al.Electrical power from sea and river water by reverse electrodialysis:a first step from the laboratory to a real power plant[J].Environmental Science&Technology,2010,44(23):9207-9212.
    [17]VEERMAN J,DE J R,SAAKES M,et al.Reverse electrodialysis:comparison of six commercial membrane pairs on the thermodynamic efficiency and power density[J].Journal of Membrane Science,2009,343(1):7-15.
    [18]POST J W,HAMELERS H M,BUISMAN C N.Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system[J].Environmental Science&Technology,2008,42(15):5785-5790.
    [19]DLUGOLECKI P,DABROWSKA J,NIJMEIJER K,et al.Ion conductive spacers for increased power generation in reverse electrodialysis[J].Journal of Membrane Science,2010,347(1):101-107.
    [20]WU X,XU S M,WU D B,et al.Electric conductivity and electric convertibility of potassium acetate in water,ethanol,2,2,2-trifluoroethanol,2-propanol and their binary blends[J].Chinese Journal of Chemical Engineering,2018,DOI:10.1016/j.cjche.2018.06.004
    [21]D?UGO?E P,NYMEIJER K,METZ S,et al.Current status of ion exchange membranes for power generation from salinity gradients[J].Journal of Membrane Science,2008,319(1):214-222.
    [22]RAMON G Z,FEINBERG B J,HOEK E M V.Membrane-based production of salinity-gradient power[J].Energy Environment Science,2011,4(11):4423.
    [23]STRATHMANN H.Ion-Exchange Membrane Separation Processes[M].Amsterdam:Elsevier Science,2004.
    [24]TEDESCO M,HAMELERS H V M,BIESHEUVEL P M.NernstPlanck transport theory for(reverse)electrodialysis(Ⅰ):Effect of coion transport through the membranes[J].Journal of Membrane Science,2016,510:370-381.
    [25]TEDESCO M,HAMELERS H V M,BIESHEUVEL P M.NernstPlanck transport theory for(reverse)electrodialysis(Ⅱ):Effect of water transport through ion-exchange membranes[J].Journal of Membrane Science,2017,531:172-182.
    [26]BURGOT J L.The Notion of Activity in Chemistry[M].Switzerland:Springer,2017.
    [27]徐士鸣,吴德兵,吴曦,等.氯化锂溶液为工质的溶液浓差发电实验研究[J],大连理工大学学报,2017,57(4):337-344.XU S M,WU D B,WU X,et al.Experimental study of solution concentration difference power generation with lithium chloride solution as working fluid[J].Journal of Dalian University of Technology,2017,57(4):337-344.
    [28]柯山星,杨琳.溶液当量电导与浓度的关系及其应用[J].安庆师院学报(自然科学版),1996,2(2):23-28.KE S X,YANG L.Relationship between solution equivalent conductance and concentration and its application[J].Journal of Anqing Normal College(Natural Science),1996,2(2):23-28.
    [29]KREYSA G,OTA K I,SAVINELL R F.Encyclopedia of Applied Electrochemistry[M].New York:Springer,2014.
    [30]HAN X H,YANG Z Z,GAO Z J,et al.Isothermal vapor-liquid equilibrium of HFC-161+DMETrEG within the temperature range of293.15-353.15 K and comparison for HFC-161 combined with different absorbents[J].Journal of Chemical and Engineering Data,2016,61(3):1321-1327.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700