顺流串联逆电渗析电堆数对能量转换效率的影响研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the influence of series RED stack numbers on energy conversion efficiency in co-flow RED system
  • 作者:何其琛 ; 徐士鸣 ; 吴曦 ; 吴德兵 ; 胡军勇 ; 张凯 ; 金东旭 ; 王平
  • 英文作者:HE Qichen;XU Shiming;WU Xi;WU Debing;HU Junyong;ZHANG Kai;JIN Dongxu;WANG Ping;Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education,School of Energy and Power Engineering,Dalian University of Technology;
  • 关键词:逆电渗析 ; 串联电堆 ; 顺流 ; 能量转换效率 ; 输出电压
  • 英文关键词:reverse electrodialysis;;series stack;;co-flow;;energy conversion efficiency;;output voltage
  • 中文刊名:MKXY
  • 英文刊名:Membrane Science and Technology
  • 机构:大连理工大学能源与动力学院海洋能源利用与节能教育部重点实验室;
  • 出版日期:2018-10-25
  • 出版单位:膜科学与技术
  • 年:2018
  • 期:v.38;No.192
  • 基金:国家自然科学基金项目(51776029);国家自然科学基金青年科学基金项目(51606024)
  • 语种:中文;
  • 页:MKXY201805006
  • 页数:9
  • CN:05
  • ISSN:62-1049/TB
  • 分类号:28-35+51
摘要
逆电渗析电堆(RED Stack)可以将自然界中广泛存在或通过人工方法制取的盐差能转换为电能。为了有效提高RED电堆的能量转换效率和输出电压,通过建立RED电堆能量转换模型,对采用溶液顺流流程的多个RED电堆(多电极)串联的RED发电系统进行理论研究,探讨RED流道总长,溶液流速以及RED电堆数对系统能量转换效率及输出特性的影响.计算结果表明:在设定参数下,降低溶液流速,增加流道总长和电堆数均能提升RED系统的发电效率.但随流道总长和电堆数继续增加,效率提升的趋势减缓.串联电堆在增加输出电压和功率密度的同时其总内阻随之增加,导致系统输出电流变化对输出电压和电堆功率密度的影响增大.
        Reverse Electrodialysis stack(RED stack)can convert salinity gradient energy which exists widely in nature or can be made by artificial methods into electricity.To effectively enhance the energy conversion efficiency and output voltage,the model for RED stack energy conversion was developed,which can be used to research on the series multiple stacks(multiple electrodes)in a co-flow RED system.The effects of total flow passageway length of RED,solution flow velocity and series RED stack numbers on energy conversion efficiency and output characteristics of RED system were discussed.Simulation results show that under the given operation parameters,reducing solution flow velocity and increasing total flow passageway length and RED stack numbers can improve power generation efficiency of the system.But the growth rate will be down with flow passageway length and RED stack numbers increasing continuously.The increase of series RED stack numbers not only enhances the output voltage and power density of the system,but also improves the internal resistance,which leads to a significant influence of system output current on output voltage and power density.
引文
[1]Post J W,Veerman J,Hamelers H V M,et al.Salinity-gradient power:Evaluation of pressure retarded osmosis and reverse electrodialysis[J].J Membr Sci,2007,288:218-230.
    [2]Wick G L,Schmitt W R.Prospects for renewable energy from the sea[J].Marine Technol Soc J,1977,11:16-21.
    [3]刘伯羽,李少红,王刚.盐差能发电技术的研究进展[J].可再生能源,2010,28(2):141-144.
    [4]徐士鸣,吴曦,吴德兵,等.从吸收制冷到逆向电渗析发电——溶液浓差能应用新技术[J].制冷技术,2017,37(2):8-13.
    [5] Long R,Li B D,Liu Z C,et al.Hybrid membrane distillation-based reverse electrodialysis electricity generation system to harvest low-grade thermal energy[J].J Membr Sci,2017,525:107-115.
    [6]Pattle R E.Production of electric power by mixing fresh and salt water in the hydroelectric pile[J].Nature,1954,174(4431):660.
    [7]Kim H K,Lee M S,Lee S Y,et al.High power density of reverse electrodialysis with pore-filling ion exchange membranes and a high open-area spacer[J].J Mater Chem A,2015,3:16302-16306.
    [8]Güler E,Baak W V,Saakes M,et al.Monovalent-ionselective membranes for reverse electrodialysis[J].J Membr Sci,2014,455:254-270.
    [9]徐士鸣,吴曦,冷强.一种利用低品位热降解高浓有机废水方法[P].中国,201711384061.2,2017-12-20.
    [10]陈霞,蒋晨啸,汪耀明,等.反向电渗析在新能源及环境保护应用中的研究进展[J].化工学报,2018,69(1):188-202.
    [11]Vermaas D A,Saakes M,Nijmeijer K.Doubled power density from salinity gradients at reduced intermembrane distance[J].Environ Sci Technol,2011,45:7089-7095.
    [12]Cipollina A,Micale G.Sustainable energy from salinity gradients[M]//Cambridge:Woodhead Publishing,2016:80.
    [13]Post J W,Hamelers H V M,Buisman C J N.Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system[J].Environ Sci Technol,2008,42:5785-5790.
    [14]Yip N Y,Vermaas D A,Nijmeijer K,et al.Thermodynamic,energy efficiency,and power density analysis of reverse electrodialysis power generation with natural salinity gradients[J].Environ Sci Technol,2014,48:4925-4936.
    [15]Veerman J,Saakes M,Metz S J,et al.Electrical power from sea and river water by reverse electrodialysis:A first step from the laboratory to a real power plant[J].Environ Sci Technol,2010,44:9207-9212.
    [16]Vermaas D A,Veerman J,Yip N Y,et al.High efficiency in energy generation from salinity gradients with reverse electrodialysis[J]. ACS Sustainable Chem Eng,2013,1:1295-1302.
    [17]Kim K S,Ryoo W,Chun M S,et al.Simulation of enhanced power generation by reverse electrodialysis stack module in serial configuration[J].Desalination,2011,318:79-87.
    [18]徐士鸣,吴德兵,吴曦,等.氯化锂溶液为工质的溶液浓差发电实验研究[J].大连理工大学学报,2017,57(4):337-344.
    [19]Veerman J,Saakes M,Metz S J,et al.Reverse electrodialysis:A validated process model for design and optimization[J].Chem Eng J,2011,166:256-268.
    [20]Tedecso M,Cipollina A,Tamburini A,et al.A simulation tool for analysis and design of reverse electrodialysis using concentrated brines[J].Chem Eng Res Design,2015,93:441-456.
    [21]Veerman J,Jong R M,Saakes M,et al.Reverse electrodialysis:Comparison of six commercial membrane pairs on the thermodynamic efficiency and power density[J].J Membr Sci,2009,343:7-15.
    [22]Veerman J,Saakes M,Metz S J,et al.Reverse electrodialysis:Performance of a stack with 50cells on the mixing of sea and river water[J].J Membr Sci,2009,327:136-144.
    [23]Vermaas D A,Güler E,Saakes M,et al.Theoretical power density from salinity gradients using reverse electrodialysis[J].Energy Procedia,2012,20:170-184.
    [24]Yip N Y,Elimelech M.Thermodynamic and energy efficiency analysis of power generate on from natural salinity gradients by pressure retarded osmosis[J].Environ Sci Technol,2012,46:5230-5239.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700