高岭土高温吸附重金属和碱金属的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A review on heavy and alkali metals adsorption by kaolin at high temperature
  • 作者:程运 ; 王昕晔 ; 吕文婷 ; 黄亚继 ; 谢浩 ; 郭若军 ; 朴桂林
  • 英文作者:CHENG Yun;WANG Xinye;Lü Wenting;HUANG Yaji;XIE Hao;GUO Ruojun;PIAO Guilin;School of Energy and Mechanical Engineering, Nanjing Normal University;Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University;Zhenjiang Innovation and Development Research Institute of Nanjing Normal University;Everbright Environmental Energy (Zhenjiang) Company Limited;
  • 关键词:高岭土 ; 重金属 ; 碱金属 ; 高温 ; 吸附
  • 英文关键词:kaolin;;heavy metal;;alkali metal;;high temperature;;adsorption
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:南京师范大学能源与机械工程学院;东南大学能源热转换及其过程测控教育部重点实验室;南京师范大学镇江创新发展研究院;光大环保能源(镇江)有限公司;
  • 出版日期:2019-05-05 11:36
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.335
  • 基金:国家自然科学基金(51706106);; 镇江市重点研发计划(SH2018014);; 江苏省博士后科研资助计划(1701160B);; 江苏省高等学校自然科学研究面上项目(17KJB470007)
  • 语种:中文;
  • 页:HGJZ201908042
  • 页数:14
  • CN:08
  • ISSN:11-1954/TQ
  • 分类号:361-374
摘要
高岭土在高温下对碱金属和重金属具有吸附能力,可以解决煤、生物质和垃圾等在燃烧、气化等过程中产生的结渣、积灰、腐蚀以及重金属和超细颗粒物排放等问题。国内外学者已对此进行了长期研究,但仍存在相关的难度和问题,因此本文从高岭土高温结构特征、研究方法、高温吸附机理、高温吸附技术应用效果以及高岭土改性等5个方面介绍了相关重要成果,并结合前人研究成果和作者自身的研究经验,提出了本领域研究的展望。指出缺乏简便而准确的金属蒸气定量发生装置和在线检测装置严重阻碍了高岭土高温吸附的试验研究,亟待开发出对应的新方法或新设备;高岭土高温吸附的同时其结构因为高温也在发生畸变,掌握其中的关联是理解高温吸附行为的关键之一;烟气组分对吸附的影响研究仍不充分,因此目前无法形成复杂烟气组分下的高岭土高温吸附行为规律和数学描述;技术应用过程中,高岭土添加量较大(通常大于3%),可能对燃烧或气化工艺产生不良影响,抑制了其工业应用;高岭土改性是提升吸附效率、降低高岭土用量的有效方法,改性工艺仍有待深入研究,但因为吸附后高岭土难以分离回收和循环再生,改性成本必须低。
        Kaolin has an ability to adsorb alkali and heavy metals at high temperatures, and can solve the problems such as slagging, ash accumulation, corrosion, and the emissions of heavy metals and ultrafine particles during the combustion or gasification of coal, biomass and garbage. The previous researchers have conducted long-term researches on this field, but there are still many related difficulties and problems. Therefore, this paper reviewed the previous research results and put forward the prospect. The important results were introduced from five aspects of kaolin high temperature structure characteristics,research methods, high temperature adsorption mechanisms, high temperature adsorption technology application and kaolin modification. Combining the research results of predecessors and the author's own research experience, the prospect of research in this field was put forward. The lack of simple and accurate metal vapor quantification device and on-line detection device seriously hinders the experimental research on high-temperature adsorption of kaolin. It is urgent to develop a corresponding new method or new equipment. The high-temperature adsorption and the structure distortion due to high temperature happen at the same time. Therefore, the correlation is one of the keys to understanding the behavior of high temperature adsorption, which were mentioned rarely in the previous researches. The effect of flue gas components on adsorption is not well studied. Thus, the high temperature adsorption behavior and mathematical description of kaolin under complex atmospheres are not formed yet. In the application process, the addition proportion of kaolin is large(usually more than 3%), which may adversely affect the combustion or gasification process and inhibit its industrial application. It is a good way to improve the adsorption efficiency and reduce the usage amount of kaolin by kaolin modification,which still need to be further studied. However, since it is difficult to separate kaolin from fly ash and to regenerate or recycle, the modification cost must be low.
引文
[1]陈媛,许杨,盛昌栋.准东煤热解、燃烧和气化过程中Na的行为及高岭土的捕获作用[J].中国电机工程学报, 2016, 36(16):4396-4401.CHEN Yuan, XU Yang, SHENG Changdong. Behavior of Na and its capture by adding kaolin during devolatilization, combustion and gasification of Zhundong coal[J].Proceedings of the Chinese Society of Electrical Engineering, 2016, 36(16):4396-4401.
    [2]张艳平,金保升.生物质热化学转化过程中碱金属问题的相关研究[J].能源研究与利用, 2007(3):27-31.ZHANG Yanping, JIN Baosheng. Research on alkali metals in biomass thermo-chemical conversion process[J]. Energy Research&Utilization, 2007(3):27-31.
    [3] YAN L, GUPTA R P, WALL T F. The implication of mineral coalescence behaviour on ash formation and ash deposition during pulverised coal combustion[J]. Fuel, 2001, 80(9):1333-1340.
    [4] ZHANG L, NINOMIYA Y, YAMASHITA T. Formation of submicron particulate matter(PM1)during coal combustion and influence of reaction temperature[J]. Fuel, 2006, 85(10):1446-1457.
    [5] GALE T K, WENDT J O L. Mechanisms and models describing sodium and lead scavenging by a kaolinite aerosol at high temperatures[J]. Aerosol Science and Technology, 2003, 37(11):865-876.
    [6] YI H, HAO J, DUAN L, et al. Fine particle and trace element emissions from an anthracite coal-fired power plant equipped with a bag-house in China[J]. Fuel, 2008, 87(10):2050-2057.
    [7] YI H, GUO X, HAO J, et al. Characteristics of inhalable particulate matter concentration and size distribution from power plants in China[J]. Journal of the Air&Waste Management Association, 2006, 56(9):1243-1251.
    [8]徐明厚,于敦喜,刘小伟.燃煤可吸入颗粒物的形成与排放[M].北京:科学出版社, 2009.XU Minghou, YU Dunxi, LIU Xiaowe. Formation and emission of coal inhalable particulate matter[M]. Beijing:Science Press, 2009.
    [9] HEAL M R, HIBBS L R, AGIUS R M, et al. Total and water-soluble trace metal content of urban background PM10, PM2.5and black smoke inEdinburgh,UK[J].AtmosphericEnvironment,2005,39(8):1417-1430.
    [10]杨复沫,马永亮,贺克斌.细微大气颗粒物PM2.5及其研究概况[J].世界环境, 2000(4):32-34.YANG Fumo, MA Yongliang, HE Kebin. A brief introduction to PM2.5and related research[J]. World Environment, 2000(4):32-34.
    [11] MANALIS N, GRIVAS G, PROTONOTARIOS V, et al. Toxic metal content of particulate matter(PM10), within the greater area of athens[J]. Chemosphere, 2005, 60(4):557-566.
    [12] WENDT J O L, LEE S J. High-temperature sorbents for Hg, Cd, Pb,and other trace metals:mechanisms and applications[J]. Fuel, 2010, 89(4):894-903.
    [13]高洪亮,周劲松,骆仲泱,等.燃煤烟气中汞在活性炭上的吸附特性[J].煤炭科学技术, 2006, 34(5):49-52.GAO Hongliang, ZHOU Jinshong, LUO Zhongyang, et al. Mercury adsorption characteristics of activated carbon in coal-fired flue gas[J].Coal Science and Technology, 2006, 34(5):49-52.
    [14] GALE T K, WENDT J O L. In-furnace capture of cadmium and other semi-volatile metals by sorbents[J]. Proceedings of the Combustion Institute, 2005, 30(2):2999-3007.
    [15] WHITE C E, PROVIS J L, PROFFEN T, et al. Density functional modeling of the local structure of kaolinite subjected to thermal dehydroxylation[J]. The Journal of Physical Chemistry A, 2010, 114(14):4988-4996.
    [16] SPERINCK S, RAITERI P, MARKS N, et al. Dehydroxylation of kaolinite to metakaolin—A molecular dynamics study[J]. Journal of Materials Chemistry, 2011, 21(7):1-10.
    [17]李佑楚,黄长雄,卢旭晨,等.煤系高岭土及其快速悬浮煅烧新工艺[J].非金属矿, 2000(3):25-27.LI Youchu, HUANG Changxiong, LU Xuchen, et al. Coal-series kaolin and its new technology of fast suspension calcination[J]. Non-metallic Mines, 2000(3):25-27.
    [18] PT CEK P, SOUKAL F, OPRAVIL T, et al. The kinetic analysis of the thermal decomposition of kaolin by DTG technique[J]. Powder Technology, 2011, 208(1):20-25.
    [19] CHENG H, LIU Q, YANG J, et al. The thermal behavior of kaolinite intercalation complexes—A review[J]. Thermochimica Acta, 2012, 545(19):1-13.
    [20] SLADE R C T, DAVIES T W, ATAK L H, et al. Flash calcines of kaolinite:effect of process variables on physical characteristics[J].Journal of materials science, 1992, 27(9):2490-2500.
    [21] SAN NICOLAS R, CYR M, ESCADEILLAS G. Characteristics and applications of flash metakaolins[J]. Applied Clay Science, 2013, 84(83):253-262.
    [22] MEINHOLD R H, ATAKUL H, DAVIESB T W, et al. Flash calcines of kaolinite:kinetics of isothermal dehydroxylation of partially dehydroxylated flash calcines and of flash calcination itself[J]. Journal of Materials Chemistry, 1992, 2(9):913-921.
    [23] ZHANG X, LIU H, XING H, et al. Improved sodium adsorption by modified kaolinite at high temperature using intercalation-exfoliation method[J]. Fuel, 2017, 191:198-203.
    [24] CHEN D, LIU X, WANG C, et al. Effects of H2O and HCl on particulate matter reduction by kaolin under oxy-coal combustion[J].Energy Fuel, 2017, 31(6):6455-6462.
    [25] UBEROI M, SHADMAN F. Simultaneous condensation and reaction of metal compound vapors in porous solids[J]. Ind. Energy Chem. Res.,1991, 30:624-631.
    [26] SCOTTO M V, UBEROI M, PETERSON T W, et al. Metal capture by sorbents in combustion processes[J]. Fuel Processing Technology,1994, 39(1/2/3):357-372.
    [27] GASPARINI E, TARANTINO S C, GHIGNA P, et al. Thermal dehydroxylation of kaolinite under isothermal conditions[J]. Applied Clay Science, 2013, 80/81:417-425.
    [28] SALVADOR S. Pozzolanic properties of flash-calcined kaolinite:a comparative study with soak-calcined products[J]. Cement and Concrete Research, 1995, 25(1):102-112.
    [29]蔡旭.生活垃圾热处置过程中重金属形态及迁移转化特性[D].杭州:浙江大学, 2015.CAI Xu. The speciation and partitioning of heavy metal during municipal solid waste thermal treatment[D]. Hangzhou:Zhejiang University, 2015.
    [30]任松彦.城市生活垃圾在焚烧过程中的重金属迁移特性研究[D].广州:华南理工大学, 2013.REN Songyan. Heavy metal transport characteristics of municipal solid waste in the incineration process[D]. Guangzhou:South China University of Technology, 2013.
    [31]王昕晔,黄亚继,仲兆平,等.炉内添加剂对垃圾焚烧过程中重金属捕集影响的试验研究[J].中国电机工程学报, 2012, 32(32):15-21.WANG Xinye, HUANG Yaji, ZHONG Zhaoping, et al. Experimental study on the capture of heavy metals by in-furnace additives during MSW incineration[J]. Proceedings of the Chinese Society of Electrical Engineering, 2012, 32(32):15-21.
    [32]任松彦,马晓茜,谢泽琼.城市生活垃圾焚烧重金属的迁移特性[J].环境化学, 2012, 31(11):1821-1822.REN Songyan, MA Xiaoqian, XIE Zeqiong. Heavy metal transport characteristics of municipal solid waste in the incineration process[J].Environmental Chemistry, 2012, 31(11):1821-1822.
    [33]涂圣康,张守玉,施大钟,等.添加剂对高钠煤热解过程中钠析出的影响[J].煤炭转化, 2016, 39(1):31-34.TU Shengkang, ZHANG Shouyu, SHI Dazhong, et al. Effect of additive on emission of sodium in high-sodium coal during pyrolysis[J]. Coal Conversion, 2016, 39(1):31-34.
    [34]张晓羽.准东煤燃烧气化过程中钠的迁移规律研究[D].北京:中国科学院研究生院, 2015.ZHANG Xiaoyu. Study on the transformation of sodium during the combustion and gasification of Zhundong coal[D]. Beijing:University of Chinese Academy of Sciences, 2015.
    [35] CHEN J, YAO H, ZHANG P A, et al. Control of PM1by kaolin or limestone during O2/CO2pulverized coal combustion[J]. Proceedings of the Combustion Institute, 2011, 33(2):2837-2843.
    [36]王超,盛昌栋,周科,等.褐煤O2/CO2燃烧时可吸入颗粒物中碱性金属分布特性[J].工程热物理学报, 2009(7):1241-1244.WANG Chao, SHENG Changdong, ZHOU Ke, et al. Distributions of basic metal elements in inhalable particulate matter during O2/CO2combustion of lignite[J]. Journal of Engineering Thermophysics, 2009(7):1241-1244.
    [37] YAO H, NARUSE I. Using sorbents to control heavy metals and particulate matter emission during solid fuel combustion[J].Particuology, 2009, 7(6):477-482.
    [38]张小锋,姚强,宋蔷,等.燃烧中吸附剂捕集铅的实验研究[J].中国电机工程学报, 2008, 28(2):61-65.ZHANG Xiaofeng, YAO Qiang, SONG Qiang, et al. Experimental study on lead capture by sorbents during combustion[J]. Proceedings of the Chinese Society of Electrical Engineering, 2008, 28(2):61-65.
    [39] HUANG Y, WANG X, LIU C, et al. Kaolin induced control of particulate lead and cadmium emissions during fluidized bed waste incineration[J]. Asia-Pacific Journal of Chemical Engineering, 2017,12(2):321-331.
    [40] WANG X Y, HUANG Y J, ZHONG Z P, et al. Control of inhalable particulate lead emission from incinerator using kaolin in two addition modes[J]. Fuel Processing Technology, 2014, 119:228-235.
    [41] CHEN J C, WEY M Y, LIN Y C. The adsorption of heavy metals by different sorbents under various incineration conditions[J].Chemosphere, 1998, 37(13):2617-2625.
    [42] DAVIDSSON K O, STEENARI B M, ESKILSSON D. Kaolin addition during biomass combustion in a 35 MW circulating fluidized bed boiler[J]. Energy Fuel, 2007, 21(4):1959-1966.
    [43]李园,陈娟,张平安,等.高岭土同时吸附Na, Pb化合物的机理研究[J].工程热物理学报, 2013, 34(1):168-172.LI Yuan, CHEN Juan, ZHANG Ping’an, et al. Simultaneous adsorption of Na and Pb compounds by kaolinite[J]. Journal of Engineering Thermophysics, 2013, 34(1):168-172.
    [44]祁慧.准东煤中钠的赋存形态和释放规律研究[D].武汉:华中科技大学, 2017.QI Hui. The existence form of sodium in Zhundong coal and the release regulars of sodium[D]. Wuhan:Huazhong University of Science and Technology, 2017.
    [45] TRAN K Q, IISA K, HAGSTR M M, et al. On the application of surface ionization detector for the study of alkali capture by kaolin in a fixed bed reactor[J]. Fuel, 2004, 83(7):807-812.
    [46] TRAN K Q, IISA K, STEENARI B M, et al. A kinetic study of gaseous alkali capture by kaolin in the fixed bed reactor equipped with an alkali detector[J]. Fuel, 2005, 84(2):169-175.
    [47] SORIA J, GAUTHIER D, FLAMANT G, et al. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD[J]. Waste Manag., 2015, 43:176-187.
    [48] SHEN F, LIU J, ZHANG Z, et al. On-line analysis and kinetic behavior of arsenic release during coal combustion and pyrolysis[J].Environmental Science&Technology, 2015, 49(22):13716-13723.
    [49] DAVIS S B, WENDT J O L. Quantitative analysis of high temperature toxic metal sorption rates using aerosol fractionation[J]. Aerosol. Sci.Tech., 2000, 33(6):536-543.
    [50] GALE T K. Mechanisms governing multi-species metal capture by kaolin[D]. Arizona:The University of Arizona, 2001.
    [51] WANG G, JENSEN P A, WU H, et al. Potassium capture by kaolin,Part 2:K2CO3, KCl, and K2SO4[J]. Energy Fuel, 2018, 32(3):3566-3578.
    [52] WANG G, JENSEN P A, WU H, et al. Potassium capture by kaolin.Part 1:KOH[J]. Energy Fuel, 2018, 32(2):1851-1862.
    [53] HU H, CHEN D, LIU H, et al. Adsorption and reaction mechanism of arsenic vapors overγ-Al2O3in the simulated flue gas containing acid gases[J]. Chemosphere, 2017, 180:186-191.
    [54] ZHANG Z, LIU J, YANG Y, et al. Theoretical investigation of sodium capture mechanism on kaolinite surfaces[J]. Fuel, 2018, 234:318-325.
    [55] WANG X Y, HUANG Y J, ZHONG Z P, et al. Theoretical investigation of cadmium vapor adsorption on kaolinite surfaces with DFT calculations[J]. Fuel, 2016, 166:333-339.
    [56] WANG X, HUANG Y, PAN Z, et al. Theoretical investigation of lead vapor adsorption on kaolinite surfaces with DFT calculations[J].Journal of hazardous materials, 2015, 295:43-54.
    [57]刘敬勇,孙水裕,陈涛,等.污泥焚烧中Pb的形态转化及吸附脱除[J].中国环境科学, 2014, 34(2):466-477.LIU Jingyong, SUN Shuiyu, CHEN Tao, et al. Migration behavior of Pb and its vaporization control during sewage sludge incineration process[J]. China Environmental Science, 2014, 34(2):466-477.
    [58] DIAZSOMOANO M, MARTINEZTARAZONA M. High-temperature removal of cadmium from a gasification flue gas using solid sorbents[J].Fuel, 2005, 84(6):717-721.
    [59]陈勇,张衍国,李清海,等.垃圾焚烧中吸附剂对镉进行脱除的热力学平衡研究[J].燃烧科学与技术, 2008, 14(3):239-245.CHEN Yong, ZHANG Yanguo, LI Qinghai, et al. Equilibrium analysis of sorbents behavior on Cd adsorption under MSW incineration conditions[J]. Journal of Combustion Science and Technology, 2008, 14(3):239-245.
    [60]郑安庆,赵增立,王小波,等.吸附剂对垃圾焚烧中重金属分布规律影响的热力学模拟研究[J].可再生能源, 2013, 31(3):101-106.ZHENG Anqing, ZHAO Zengli, WANG Xiaobo, et al. Effect of adsorbent on distribution of heavy metals in incineration of municipal solid waste:thermodynamic equilibrium analysis[J]. Renewable Energy Resources, 2013, 31(3):101-106.
    [61]夏文青,黄亚继,王昕晔,等.非碳基吸附剂高温捕集化铅蒸气[J].化工进展, 2017, 36(9):3508-3513.XIA Wenqing, HUANG Yaji, WANG Xinye, et al. Experimental study on high temperature adsorption of lead chloride by non-carbon adsorbents[J]. Chemical Industry and Engineering Progress, 2017, 36(9):3508-3513.
    [62] UBEROI M, SHADMAN F. Sorbents for removal of lead compounds from hot flue-gases[J]. AIChE J., 1990, 36(2):307-309.
    [63] UBEROL M, SHADMAN F. High-temperature removal of cadmium compounds using solid sorbents[J]. Environmental Science&Technology, 1991, 25(7):1285-1289.
    [64] UBEROI M, PUNJAK W, SHADMAN F. The kinetics and mechanism of alkali removal from flue gases by solid sorbents[J]. Progress in Energy and Combustion Science, 1990, 16(4):205-211.
    [65] GALE T K, WENDT J O L. Mechanisms and models describing sodium and lead scavenging by a kaolin aerosol at high temperatures[J]. Aerosol. Sci. Tech., 2003, 37(11):865-876.
    [66] GULLETT B K, RAGHUNATHAN K. Reduction of coal-based metal emissions by furnace sorbent injection[J]. Energy Fuels, 1994, 8(5):1068-1076.
    [67] HUANG Y, YANG Y, HU H, et al. A deep insight into arsenic adsorption overγ-Al2O3in the presence of SO2/NO[J]. Proceedings of the Combustion Institute, 2019, 37(3):2951-2957.
    [68] MAHULI S, AGNIHOTRI R, CHAUK S, et al. Mechanism of arsenic sorption by hydrated lime[J]. Environmental Science&Technology,1997, 31(11):3226-3231.
    [69] GALE T K, WENDT J O L. High-temperature interactions between multiple-metals and kaolin[J]. Combustion and Flame, 2002, 131(3):299-307.
    [70] WANG X, CHEN M, LIU C, et al. Typical gaseous semi-volatile metals adsorption by meta-kaolinite:a DFT study[J]. International Journal of Environmental Research and Public Health, 2018, 15(10):2154.
    [71] YAO H, NARUSE I. Control of trace metal emissions by sorbents during sewage sludge combustion[J]. Proceedings of the Combustion Institute, 2005, 30(2):3009-3016.
    [72]孙伟,刘小伟,徐义书,等.两种改性高岭土减排超细颗粒物的对比分析[J].化工学报, 2016, 67(4):1179-1185.SUN Wei, LIU Xiaowei, XU Yishu, et al. Contrastive analysis of reducing ultrafine particulate matters emission by two modified kaolin[J]. CIESC Journal, 2016, 67(4):1179-1185.
    [73] SI J, LIU X, XU M, et al. Effect of kaolin additive on PM2.5reduction during pulverized coal combustion:importance of sodium and its occurrence in coal[J]. Applied Energy, 2014, 114:434-444.
    [74] ZHOU K, XU M, YU D, et al. Formation and control of fine potassiumenriched particulates during coal combustion[J]. Energy&Fuels,2010, 24(12):6266-6674.
    [75] XU Y, LIU X, WANG H, et al. Influences of in-furnace kaolin addition on the formation and emission characteristics of PM2.5in a1000MW coal-fired power station[J]. Environmental Science&Technology, 2018, 52(15):8718-8724.
    [76]王昕晔.垃圾焚烧过程中铅和镉的挥发特性及其排放控制研究[D].南京:东南大学, 2016.WANG Xinye. Volatilization characteristics and emissions control of lead and cadmium during waste incineation[D]. Nanjing:Southeast University, 2016.
    [77]郑云锋,李荻,陈淑琨,等.催化裂化催化剂专用高岭土改性研究进展[J].工业催化, 2012, 20(11):1-5.ZHENG Yunfeng, LI Di, CHEN Shukun, et al. Progress in modification research on kaolin used for catalytic cracking catalysts[J]. Industrial Catalysis, 2012, 20(11):1-5.
    [78]王栋,唐玉龙,刘涛,等.改性高岭土性能的研究[J].工业催化,2014, 22(2):128-131.WANG Dong, TANG Yulong, LIU Tao, et al. Study of the performance of modified kaoline clay[J]. Industrial Catalysis, 2014, 22(2):128-131.
    [79]张永利,朱佳,史册,等.高岭土的改性及其对Cr(Ⅵ)的吸附特性[J].环境科学研究, 2013, 26(5):561-568.ZHANG Yongli, ZHU Jia, SHI Ce, et al. Modification of kaolin and its adsorption properties on Cr(Ⅵ)[J]. Research of Environmental Sciences, 2013, 26(5):561-568.
    [80]王虹,林建伟,詹艳慧,等.锆改性高岭土原位改良技术控制重污染河道底泥磷释放效果[J].环境科学, 2015, 36(10):3720-3729.WANG Hong, LIN Jianwei, ZHAN Yanhui, et al. Efficiency of sediment amendment with zirconium-modified kaolin clay to control phosphorus release from sediments in heavily polluted rivers[J].Environmental Science, 2015, 36(10):3720-3729.
    [81]朱志超,朱小燕,雷新荣.硅烷偶联剂改性高岭土对PVDF膜性能的影响研究[J].膜科学与技术, 2015, 35(6):9-15.ZHU Zhichao, ZHU Xiaoyan, LEI Xinrong. Effect of silane coupling agent modified kaolinite addition on the performance of PVDF membrane[J]. Membrane Science and Technology, 2015, 35(6):9-15.
    [82]范颖芳,张世义.纳米高岭土颗粒改性水泥基复合材料的性能[J].土木建筑与环境工程, 2014, 36(1):130-137.FAN Yingfang, ZHANG Shiyi. Mechanical and chloride diffusion behavior of kaolinite clay modified cement-based material[J]. Journal of Chongqing Jianzhu University, 2014, 36(1):130-137.
    [83]曹青,李奥.插层剂对高岭土插层改性的研究进展[J].中国陶瓷,2016, 52(4):6-11.CAO Qing, LI Ao. Research progress on modification of kaolin intercalation[J]. China Ceramics, 2016, 52(4):6-11.
    [84]崔超,邵珊.高岭石有机插层复合材料的研究及应用现状[J].佛山陶瓷, 2008(5):36-40.CUI Chao, SHAO Shan. Research and application status of kaolinite/organics intercalated composites[J]. Foshan Ceramics, 2008(5):36-40.
    [85]唐武飞,谷晓昱,张胜,等.磷酸二氢钾插层改性高岭土复合物的制备与表征[J].光谱学与光谱分析, 2015, 35(2):462-465.TANG Wufei, GU Xiaoyu, ZHANG Sheng, et al. Preparation and characterization of kaolinite-potassium dihydrogen phosphate intercalation composite[J]. Spectroscopy and Spectral Analysis, 2015,35(2):462-465.
    [86] CHENG H, LIU Q, YANG J, et al. Thermal behavior and decomposition of kaolinite–potassium acetate intercalation composite[J]. Thermochimica Acta, 2010, 503/504:16-20.
    [87]宋海兵.煅烧高岭土的生产简述与全干法煅烧工艺制度[J].中国非金属矿工业导刊, 2004(1):19-23.SONG Haibing. Production of dry calcined kaolin and its technic condition[J]. China Non-metallic Mining Iindustry Herald, 2004(1):19-23.
    [88]许霞,郑水林.我国煤系煅烧高岭土研究现状[J].中国非金属矿工业导刊, 2000(5):12-15.XU Xia, ZHENG Shuilin, Present study situation of calcination kaolin in coal-bearing formation in China[J]. China Non-metallic Mining Industry Herald, 2000(5):12-15.
    [89]刘从华,高雄厚,张忠东,等.改性高岭土性能研究Ⅰ.酸性和催化活性[J].石油炼制与化工, 1999(4):34-40.LIU Conghua, GAO Xionghou, ZHANG Zhongdong, et al. Study on properties of modified kaolin[J]. Petroleum Processing and Petrochemicals, 1999(4):34-40.
    [90]欧延,林敬东,陈文瑞,等.酸改性高岭土的结构与性能的研究[J].厦门大学学报(自然科学版), 2004(2):272-274.OU Yan, LIN Jingdong, CHEN Wenrui, et al. A study on structure and characteristic of acid-modified kaolin[J]. Journal of Xiamen University(Natural Science), 2004(2):272-274.
    [91]赵晨,马智,齐小周,等.酸和碱处理对内蒙古煤系高岭土结构和裂化性能的影响[J].工业催化, 2007(1):14-18.ZHAO Chen, MA Zhi, QI Xiaozhou, et al. Effects of alkali and acid modification on catalytic cracking behaviors of Inner Mongolian coalmeasure hard kaolin[J]. Industrial Catalysis, 2007(1):14-18.
    [92]郑云锋,李荻,陈淑琨,等.催化裂化催化剂专用高岭土改性研究进展[J].工业催化, 2012, 20(11):1-5.ZHENG Yunfeng, LI Di, CHEN Shukun, et al. Progress in modification research on kaolin used for catalytic cracking catalysts[J]. Industrial Catalysis, 2012, 20(11):1-5.
    [93]刘明慧,魏振浩,周茁,等.碱处理对高岭土微球上原位合成ZSM-5分子筛的影响[J].无机盐工业, 2016, 48(7):68-72.LIU Minghui, WEI Zhenhao, ZHOU Zhuo, et al. Effect of alkali treatment on in-situ synthesis of ZSM-5 zeolite on calcined kaolin microspheres[J]. Inorganic Chemicals Industry, 2016, 48(7):68-72.
    [94] JOZEFACIUK G, BOWANKO G. Effect of acid and alkali treatments on surface areas and adsorption energies of selected minerals[J]. Clays and Clay Minerals, 2002, 50(6):771-783.
    [95] WANG H, FENG Q, LIU K. The dissolution behavior and mechanism of kaolinite in alkali-acid leaching process[J]. Applied Clay Science,2016, 132/133:273-280.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700