用户名: 密码: 验证码:
利用相干制备的三能级原子介质实现低噪声弱光相位操控
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Low-noise optical field phase-shifting manipulated using a coherently-prepared three-level atomic medium
  • 作者:关佳 ; 顾翊晟 ; 朱成杰 ; 羊亚平
  • 英文作者:Guan Jia;Gu Yi-Sheng;Zhu Cheng-Jie;Yang Ya-Ping;School of Physics Science and Engineering, Tongji University;
  • 关键词:非线性光学 ; 相干光学效应 ; 量子噪声
  • 英文关键词:nonlinear optics;;coherent optical effects;;quantum noise
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:同济大学物理科学与工程学院;
  • 出版日期:2016-12-14 14:20
  • 出版单位:物理学报
  • 年:2017
  • 期:v.66
  • 基金:国家重点基础研究发展计划(批准号:2016YFA0302800,2013CB632701);; 国家自然科学基金(批准号:11504272,11474221);; 上海科学技术委员会(批准号:15YF1412400)资助的课题~~
  • 语种:中文;
  • 页:WLXB201702019
  • 页数:9
  • CN:02
  • ISSN:11-1958/O4
  • 分类号:163-171
摘要
我们发现利用相干制备的三能级原子介质可实现低噪声弱光相位操控.基于两波混频效应,相干制备的原子系统在弱光相位操控方面有许多新特性,例如宽频范围内无损常数相位的实现以及无附加相位的吸收与放大等.通过同时锁定抽运光的光强和双光子失谐,我们发现探测光的吸收为零,且探测光的相位对于频率的变化十分缓慢,因而可以通过选择适当的系统参数在很宽的频率范围内实现无损π相位操控.同时,利用该系统我们可以在单光子水平下实现低噪声、无损的量子相位门,这个系统在光通信和信息处理领域有着重要的应用价值.
        We propose a multifunction phase-shifting manipulator with low noise at a single-photon level, by using a threelevel atomic scheme. This three-level system interacts with a strong pumping field and a weak probe field with a large detuning. Due to this large detuning, two lower states can be coherently prepared prior to the injection of the pump and probe fields. In our configuration, the duration of the pumping field is much longer than that of the probe field.By solving the Heisenberg-Langevin equations of our system under the steady state approximation, we calculate the linear susceptibility of the system and examine the quantum noise properties of the probe field in detail. We show that this scheme, which rests on the process of two-wave mixing with initial atomic coherence, exhibits many interesting properties that neither typical electromagnetically induced transparency(EIT) schemes nor active Raman gain(ARG)schemes possess. Although both EIT- and ARG-based schemes have been widely investigated in atomic medium, the direct generalizations of these schemes to the single/few photon limit prove to be more problematic. The low fidelity due to the significant probe-field attenuation in EIT medium and the large quantum noise due to the amplification of the probe field in an active Raman gain medium are the main obstacles that prohibit a high-fidelity, low-noise phase shifter from being realized in the single/few photon limit. Physically, this scheme can be viewed as a hybrid scheme in which two processes of different physical principles are allowed to interfere with each other to achieve many desired functionalities.For instance, it can be used as a lossless two-photon-broadband phase-shifter with suitable system parameters. It can also be used as an attenuator/amplifier and a total transparency with a zero phase shift. In particular, we show that by locking the pump field intensity and the two-photon detuning simultaneously a flat constant π-phase shift can be realized with unit probe fidelity in a broad probe field frequency range. Applying the quantum regression theorem, we calculate the noise spectrum of the outgoing probe field as a large phase shift is achieved, and show that this two-photon-insensitiveπ-phase shift may significantly reduce the quantum noise fluctuations associated with a Raman gain process, and have a lot of potential applications for quantum information processing and optical telecommunication. The realization of this broadband π-phase-shift with significantly reduced quantum noise fluctuations makes this scheme attractive for the realization of low-noise phase-gate/polarization-gate at single-photon level.
引文
[1]Ottaviani C,Vitali D,Artoni M,Cataliotti F,Tombesi P 2003 Phys.Rev.Lett.90 197902
    [2]Fleischhauer M,Imamo?lu A,Marangos J P 2005 Rev.Mod.Phys.77 633
    [3]Harris S E,Field J E,Imamo?lu A 1990 Phys.Rev.Lett.64 1107
    [4]Hau L V,Harris S E,Dutton Z 1999 Nature 397 594
    [5]Petrosyan D,Kurizki G 2002 Phys.Rev.A 65 033833
    [6]Zhu C J,Deng L,Hagley E W 2014 Phys.Rev.A 90063841
    [7]Deng L,Payne M G 2007 Phys.Rev.Lett.98 253902
    [8]Jiang K J,Deng L,Payne M G 2006 Phys.Rev.A 74041803
    [9]Tan C H,Huang G X 2014 Phys.Rev.A 89 033860
    [10]Huang G X,Hang C,Deng L 2008 Phys.Rev.A 77011803
    [11]Hang C,Huang G X 2010 Opt.Express 18 2952
    [12]Zhu C J,Deng L,Hagley E W 2013 Phys.Rev.A 88023854
    [13]Li R B,Zhu C J,Deng L,Hagley E W 2014 Appl.Phys.Lett.105 161103
    [14]Bell W E,Bloom A L 1961 Appl.Phys.Lett.6 280
    [15]Alzetta G,Gozzini A,Moi L,Orriols G 1976 Nuovo Cimento B 36 5
    [16]Alzetta G,Gozzini A,Moi L,Orriols G 1979 Nuovo Cimento B 52 209
    [17]Arimondo E,Orriols G 1976 Lett.Nuovo Cimento 17333
    [18]Gray H R,Whitley R M,Stroud C R 1978 Opt.Lett.3218
    [19]Arimondo E 1996 Progress in Optics 35 257
    [20]Javan A 1957 Phys.Rev.107 1579
    [21]H?nsch T W,Toschek P E 1970 Z.Phys.236 213
    [22]Popova T Y,Popov A K,Rautian S G,Sokolovskii R I1970 Sov.Phys.JETP 30 466
    [23]Kocharovskaya O A,Khanin Y I 1988 JETP Lett.48630
    [24]Harris S E 1989 Phys.Rev.Lett.62 1033
    [25]Schmidt H,Imamo?lu A 1996 Opt.Lett.21 1936
    [26]Lukin M D,Imamo?lu A 2000 Phys.Rev.Lett.84 1419
    [27]Fleishhauer M,Lukin M D 2000 Phys.Rev.Lett.845094
    [28]Deng L,Payne M G,Garrett W R 2004 Opt.Commun.242 641
    [29]Deng L,Payne M G,Hagley E W 2004 Phys.Rev.A 70063813
    [30]Deng L,Payne M G,Garrett W R 2006 Phys.Rep.429123
    [31]Zhang J X,Cai J,Bai Y F,Gao J R,Zhu S Y 2007 Phys.Rev.A 76 033814
    [32]Lu C P,Yuan C H,Zhang W P 2008 Acta Phys.Sin.57 6976(in Chinese)[鲁翠萍,袁春华,张卫平2008物理学报57 6976]
    [33]Peng A,Johnsson M,Bowen W P,Lam P K,Bachor H A,Hope J J 2005 Phys.Rev.A 71 033809
    [34]Chen Y C,Liao Y A,Chiu H Y,Su J J,Yu I A 2001Phys.Rev.A 64 053806
    [35]Polzik E S,Carri J,Kimble H J 1992 Phys.Rev.Lett.68 3020
    [36]Camparo J C 1998 J.Opt.Soc.Am.B 15 1177

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700