干湿循环下MgSO_4侵蚀对UHPC相组成及其微结构的影响机理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Dry-Wet Cycles Combined MgSO_4 Attack on the C-S-H Phase Composition and Microstructure of UHPC
  • 作者:丁庆军 ; 鄢鹏 ; 杨军 ; 叶强 ; 李宏斌 ; 汪迪
  • 英文作者:DING Qing-jun;YAN Peng;YANG Jun;YE Qiang;LI Hong-bin;WANG Di;State Key Laboratory of Silicate Materials for Architectures,Wuhan University of Technology;
  • 关键词:MgSO_4侵蚀 ; 干湿循环 ; 养护制度 ; UHPC ; C-S-H微结构
  • 英文关键词:MgSO_4 attack;;dry-wet cycle;;curing system;;UHPC;;C-S-H microstructure
  • 中文刊名:GSYT
  • 英文刊名:Bulletin of the Chinese Ceramic Society
  • 机构:武汉理工大学硅酸盐建筑材料国家重点实验室;
  • 出版日期:2019-05-15
  • 出版单位:硅酸盐通报
  • 年:2019
  • 期:v.38;No.272
  • 基金:国家重点基础研究发展计划(973计划)(2015CB655101);; 国家自然科学基金(51778513)
  • 语种:中文;
  • 页:GSYT201905004
  • 页数:9
  • CN:05
  • ISSN:11-5440/TQ
  • 分类号:26-33+41
摘要
UHPC在海洋工程建设中具有良好的应用前景,但海洋环境中存在的腐蚀性离子和干湿循环作用将会影响UHPC的微观结构,进而影响其耐久性能。通过XRD,SEM-EDS,~(29)Si和~(27)Al NMR等方法研究了干湿循环下MgSO4侵蚀和养护制度对UHPC微结构的影响。结果表明:干湿循环下MgSO_4侵蚀可促进UHPC浆体中AFt和Mg(OH)_2生成,降低C-S-H凝胶的Al[4]/Si和Ca/Si,并促进TAH和硅氧链上脱离的Al向AFt和AFm转化; 210℃-2 MPa压蒸养护过程可降低UHPC浆体中的Ca(OH)_2和SiO_2含量,提高UHPC浆体的水化程度和致密度,并形成Al[4]/Si较高且Ca/Si较低的C-S-H凝胶;压蒸养护可减少侵蚀作用下AFt和Mg(OH)_2的生成,有效削弱MgSO_4干湿循环侵蚀对UHPC浆体中C-S-H凝胶的脱铝和脱钙作用,并减少Al相转化程度。
        UHPC has a good application prospect in marine engineering construction,but the corrosive ions and dry-wet cycles in the marine environment will affect the microstructure and durability of UHPC.The influence of dry-wet cycles combined MgSO_4 attack and curing-regime on the microstructure of UHPC were investigated by XRD,SEM-EDS,29 Si and27 Al NMR techniques. The results show that dry-wet cycles combined MgSO_4 attack promotes the formation of AFt and Mg( OH)_2 in UHPC paste,reduces Al[4]/Si and Ca/Si in C-S-H gel,and promotes the conversion of TAH and Al[4] to AFt and AFm.210 ℃-2 MPa autoclaved curing process reduces the content of Ca( OH)_2 and SiO_2,increases the hydration degree and density of the UHPC paste,and form C-S-H gel of higher Al[4]/Si and lower Ca/Si. Under dry-wet cycles combined MgSO_4 attack,autoclaved curing reduces the formation of AFt and Mg( OH)_2,effectively weakens the decalcification and dealuminization effect of the corrosion,and reduces the degree of Al phase conversion.
引文
[1] Richard P,Cheyrezy M. Composition of reactive powder concretes[J]. Cement and Concrete Research,1995,25(7):1501-1511.
    [2] Rougeau P,Borys B. Ultra high performance concrete with ultrafine particles other than silica fume[C]. Proceedings of the International Symposium on Ultra High Performance Concrete,2004.
    [3] Massidda L,Sanna U,Cocco E,et al. High pressure steam curing of reactive-powder mortars[J]. Special Publication,2001,200:447-464.
    [4] Matte V,Moranville M. Durability of reactive powder composites:influence of silica fume on the leaching properties of very low water/binder pastes[J]. Cement and Concrete Composites,1999,21(1):1-9.
    [5] Shao X,Zhan H,Lei W,et al. Conceptual design and preliminary experiment of super-long-span continuous box-girder bridge composed of oneway prestressed UHPC[J]. China Civil Engineering Journal,2013,46(8):83-89.
    [6] Bruhwiler E,Denarie E. Rehabilitation and strengthening of concrete structures using ultra-high performance fibre reinforced concrete[J].Stucture Engineering International,2013,23(4):450-457.
    [7] Müllauer W,Beddoe R E,Heinz D. Sulfate attack expansion mechanisms[J]. Cement and Concrete Research,2013,52:208-215.
    [8] Ding Q,Hu C,Feng X,et al. Effect of curing regime on polymerization of C-S-H in hardened cement pastes[J]. Journal of Wuhan University of Technology(Materials Science Edition),2013,28(4):715-720.
    [9] Li X. Study on the mechanism of magnesium sulfate to cement and C-S-H gel[J]. Advanced Materials Research,2011,243:4687-4690.
    [10] Massiot D,Fayon F,Capron M,et al. Modelling one-and two-dimensional solid-state NMR spectra[J]. Magnetic Resonance in Chemistry,2002,40(1):70-76.
    [11] Santhanam M,Cohen M D,Olek J. Mechanism of sulfate attack:a fresh look Part 1:summary of experimental results[J]. Cement and Concrete Research,2002,32(6):915-921.
    [12] Zhang W,Zhang J,Ye J,et al. Influence of synthesis conditions on morphology of ettringite[J]. Journal of the Chinese Ceramic Society,2017,5:631-638.
    [13] Yazici H,Yardimci M Y,Yi gˇiter H,et al. Mechanical properties of reactive powder concrete containing high volumes of ground granulated blast furnace slag[J]. Cement and Concrete Composites,2010,32(8):639-648.
    [14] Tosun K,Baradan B. Effect of ettringite morphology on DEF-related expansion[J]. Cement and Concrete Composites,2010,32(4):271-280.
    [15] Grimmer A R. Structural investigation of calcium silicates from29Si chemical shift measurements[J]. Application of NMR Spectroscopy to Cement Science,1994:113-151.
    [16] Justnes H,Meland I,Bjorgum J O,et al. Nuclear magnetic resonance(NMR)-a powerful tool in cement and concrete research[J]. Advances in Cement Research,1990,3(11):105-110.
    [17] Richardson I G. The nature of the hydration products in hardened cement pastes[J]. Cement and Concrete Composites,2000,22(2):97-113.
    [18] Ding Q,Yang J,Zhang G,et al. Effect of magnesium on the C-S-H nanostructure evolution and aluminate phases transition in cement-slag blend[J]. Journal of Wuhan University of Technology(Materials Science Edition),2018,33(1):108-116.
    [19] Ding Q,Yang J,Hou D,et al. Insight on the mechanism of sulfate attacking on the cement paste with granulated blast furnace slag:an experimental and molecular dynamics study[J]. Construction and Building Materials,2018,169:601-611.
    [20] Fernández-Jimenez A,Torre A G D L,Palomo A,et al. Quantitative determination of phases in the alkali activation of fly ash. Part I. Potential ash reactivity[J]. Fuel,2006,85(5):625-634.
    [21] Andersen M D,Jakobsen H J,Skibsted J. A new aluminium-hydrate species in hydrated Portland cements characterized by27Al and29Si MAS NMR spectroscopy[J]. Cement and Concrete Research,2006,36(1):3-17.
    [22] Sun G K,Young J F,Kirkpatrick R J. The role of Al in C-S-H NMR,XRD,and compositional results for precipitated samples[J]. Cement and Concrete Research,2006,36(1):18-29.
    [23] Kunther W,Lothenbach B,Skibsted J. Influence of the Ca/Si ratio of the C-S-H phase on the interaction with sulfate ions and its impact on the ettringite crystallization pressure[J]. Cement and Concrete Research,2015,69:37-49.
    [24] Zhang G,Zhang X,Ding Q,et al. Microstructural evolution mechanism of C-(A)-S-H Gel in portland cement pastes affected by sulfate ions[J]. Journal of Wuhan University of Technology(Materials Science Edition),2018,33(3):639-647.
    [25] Andersen M D,And H J J,Skibsted J. Incorporation of aluminum in the calcium silicate hydrate(C-S-H)of hydrated portland cements:a highfield27Al and29Si MAS NMR investigation[J]. Inorganic Chemistry,2003,42(7):2280-2287.
    [26] Richardson I G,Brough A R,Brydson R,et al. Location of aluminum in substituted calcium silicate hydrate(C-S-H)gels as determined by29Si and27Al NMR and EELS[J]. Journal of the American Ceramic Society,2010,76(9):2285-2288.
    [27] Skibsted J,Jakobsen H J,Hall C. Quantitative aspects of27Al MAS NMR of calcium aluminoferrites[J]. Advanced Cement Based Materials,1998,7(2):57-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700