利用表面等离子体共振效应确定金纳米棒的尺寸
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Determination of the size of gold nanorods using surface plasmon resonance
  • 作者:陈爽 ; 高亚臣
  • 英文作者:CHEN Shuang;GAO Yachen;School of Electronic Engineering , Heilongjiang University;
  • 关键词:光谱学 ; 表面等离子体共振 ; 时域有限差分法 ; 金纳米棒 ; 吸收光谱 ; 尺寸
  • 英文关键词:spectroscopy;;surface plasmon resonance(SPR);;finite difference time domain method(FDTD);;gold nanorods;;absorption specturm;;size
  • 中文刊名:GXJS
  • 英文刊名:Optical Technique
  • 机构:黑龙江大学电子工程学院;
  • 出版日期:2019-05-15
  • 出版单位:光学技术
  • 年:2019
  • 期:v.45;No.257
  • 基金:黑龙江省自然科学基金(F2018027)
  • 语种:中文;
  • 页:GXJS201903006
  • 页数:4
  • CN:03
  • ISSN:11-1879/O4
  • 分类号:35-38
摘要
金属纳米粒子的尺寸和形状对其物理和化学性质有很大影响,通常利用昂贵的透射电子显微镜和扫描电子显微镜进行其尺寸测量。为了节约测量成本,利用时域有限差分法研究了金纳米棒的尺寸与吸收峰的对应关系得到间接的测量方法。即当金纳米棒的纵横比增大时,横向等离子峰几乎没有变化,纵向等离子峰出现明显的红移,且红移速度随着金纳米棒半径的增大而增大。实际制备了两种不同尺寸的金纳米棒样品,通过理论模拟确定的金纳米棒的尺寸与利用透射电子显微镜测量的金纳米棒的尺寸符合的很好。
        The size and shape of metal nanoparticles have great influence on their physical and chemical properties. Usually, the size is measured by using expensive transmission electron microscope and scanning electron microscope. The relationship between the size of gold nanorods and the absorption peak is studied by using the finite difference time domain method. The results show that the transverse plasma peak of gold nanorods does not change obviously and the longitudinal plasmon peaks red shifts obviously when the aspect ratio of gold nanorods increases. There is a linear relationship between the longitudinal plasma peak and the aspect ratio of the gold nanorods, moreover, the red shifts velocity of the longitudinal plasma peak increase with the increase of the radius of gold nanorods. Thus, the size of gold nanorods can be indirectly determined by theoretical simulation. Two kinds of gold nanorods with different sizes have been prepared. The size of the gold nanorods determined by theoretical simulation is in good agreement with that measured by transmission electron microscope(TEM).
引文
[1] Aubry A,Lei D Y,Fernandez-Dominguez A I,et al.Plasmonic light-harvesting devices over the whole visible spectrum [J].Nano Letter,2010,10(7):2574—2579.
    [2] H?ppener C H,Lapin Z J,Bharadwaj P,et al.Self-similar gold-nanoparticle antennas for a cascaded enhancement of the optical field[J].Physical Review Letters,2012,109(1):017402.
    [3] Zhao J H,Yuan H C,Hong X et al.Determination of oxytetracycline content in duck meat using silver nanopartile enhanced fluorescence[J].Optics and Precision Engineering,2014,22(11):2902—2907.
    [4] Chuang M K,Yang S S,Chen F C.Metal nanoparticle-decorated two-dimensional molybdenum sulfide for plasmonic-enhanced polymer photovoltaic devices[J].Materials,2015,8(8):5414—5425.
    [5] Tuersun P,Han X E.Optimal design of gold nanoshells for optical imaging and photothermal therapy[J].Optik-International Journal for Light and Electron Optics,2014,125(14):3702—3706.
    [6] Quinten M.Optical properties of nanoparticle systems:Mie and beyond[M].Germany:Wiley-VCH Verlag GmbH & Co press,2010:1—485.
    [7] Jana N R,Gearheart L,Murphy C J.Seeding growth for size control of 5-40nm diameter gold nanoparticles [J].Langmuir,2001,17(22):6782—6786.
    [8] Feng H,Yang Y,You Y,et al.Simple and rapid synthesis of ultrathin gold nanowires,their self-assembly and application in surface-enhanced Raman scattering[J].Chemical Communications,2009,(15):1984—1986.
    [9] Jana N R,Gearheart L,Murphy C J.Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template[J].Advanced materials,2001,13(18):1389—1393.
    [10] Lim B,Xia Y.Metal nanocrystals with highly branched morphologies[J].Angewandte Chemie International Edition,2011,50(1):76—85.
    [11] Hao E,Bailey R C,Schatz G C,et al.Synthesis and optical properties of branched gold nanocrystals[J].Nano Letters,2004,4(2):327—330.
    [12] Stender A S,Wei X,Augspurger A E,et al.Plasmonic behavior of single gold dumbbells and simple dumbbell geometries[J].The Journal of Physical Chemistry C,2013,117(31):16195—16202.
    [13] Murphy C J,Thompson L B,Alkilany A M,et al.The many faces of gold nanorods [J].The Journal of Physical Chemistry Letters,2010,1(19):2867—2875.
    [14] Davies A J.The finite element method [M].Oxford:Clarendon press,1980:1—663.
    [15] Cao Z Q.Transfer matrix method in guided wave optics[M].Shanghai:Shanghai Jiao Tong University Press,2000:88—95.
    [16] Moharam M G,Gaylord T K.Three-dimensional vector coupled-wave analysis of planar-grating[J].Journal of the Optical Society of America,1983,73(9):1105—1112.
    [17] Han J G,Wan F,Zhu Z Y,et al.Shift in low-frequency vibrational spectral of transition-metal zirconium compounds[J].Applied Physics Letters,2005,87(17):172107.
    [18] Ke S L,Wei C X,Mo B,et al.Research progress on the optical properties of gold nanorods[J].Acta Physico-Chimica Sinica,2012,28(6):1275—1290.
    [19] Johnson P B,Christy R W.Optical constants of the noble metals[J].Phys Rev B,1972,6(12):4370—4379.
    [20] Ye X,Zheng C,Chen J,et al.Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods[J].Nano Letters,2013,13(2):765—771.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700