粤北岩溶区雨水资源空间可利用潜力评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Evaluation on Potential of Rainwater Resource Utilization of Karst Region in Northern Guangdong Province
  • 作者:陈佳升 ; 尹辉
  • 英文作者:CHEN Jiasheng;YIN Hui;School of Earth Science, East China Institute of Technology;School of Geography and Tourism, Huizhou University;
  • 关键词:粤北岩溶区 ; 雨水资源 ; 潜力评价
  • 英文关键词:karst region in northern Guangdong Province;;rainwater resource;;evaluation of potential
  • 中文刊名:STBY
  • 英文刊名:Research of Soil and Water Conservation
  • 机构:东华理工大学地球科学学院;惠州学院地理与旅游学院;
  • 出版日期:2019-03-29
  • 出版单位:水土保持研究
  • 年:2019
  • 期:v.26;No.133
  • 基金:广东省自然科学基金(2015A030310275);; 广东省教育厅教改项目(JG2015173)
  • 语种:中文;
  • 页:STBY201902030
  • 页数:8
  • CN:02
  • ISSN:61-1272/P
  • 分类号:191-197+205
摘要
利用3S技术开展粤北岩溶区雨水资源空间可利用潜力评价,可以为区域雨水资源评价提供方法参考,为研究区域雨水资源开发利用提供决策支持。选取了岩性、气候、土壤、地形和植被因素作为评价指标,利用粤北岩溶区的遥感数据、气象数据、DEM等,在3S技术的支持下实现了评价指标空间量化和表达,并基于此评价了粤北岩溶区雨水资源空间可利用潜力。结果表明:(1) 3个模型计算结果均显示雨水资源可利用潜力呈现块状分布、梯度变化的特点,且从模型1到模型3,梯度变化逐渐增大。(2)粤北岩溶区雨水资源空间可利用潜力空间分布不均,区域差异较大。(3)主成分分析显示,雨水资源空间可利用潜力受到各因素的综合影响,贡献率较大的是岩性因素和地形因素。
        Using 3 S technology to evaluate the potential of rainwater resource utilization in the karst region of northern Guangdong Province can provide a reference for the evaluation on regional rainwater resources and provide decision support for the development and use of rainwater resources in the study area. The lithology, soil, topography and vegetation as the indicators were selected. Space quantization of indicators was expressed based on 3 S technology with remote sensing data, meteorological data and DEM data. Then the potential of rainwater resource was estimated based on this. The results showed that:(1) the potential of rainwater resources calculated by the three models all showed the characteristics of block distribution and gradient change, and the gradient change gradually increased from model 1 to model 3;(2) spatial distribution of potential of rainwater resources in karst region of northern Guangdong Province was uneven, and the regional difference was great;(3) principal component analysis showed that the potential of rainwater resources utilization was affected by various factors, and lithology and topography had the higher contribution rates to the potential.
引文
[1]李阳兵,罗光杰,程安云,等.黔中高原面石漠化演变典型案例研究:以普定后寨河地区为例[J].地理研究,2013,32(5):828-838.
    [2]熊康宁,李晋,龙明忠.典型喀斯特石漠化治理区水土流失特征与关键问题[J].地理学报,2012,67(7):878-888.
    [3]陆冠尧,魏兴琥,李森, 等.粤北石漠化地区植被退化及其与降雨截留量和土壤的相关性[J].中国沙漠,2013,33(2):358-366.
    [4]B?r R, Rouholahnejad E, Rahman K, et al. Climate change and agricultural water resources: A vulnerability assessment of the Black Sea catchment[J]. Environmental Science & Policy, 2015,46:57-69.
    [5]Jeuland M, Whittington D. Water resources planning under climate change:Assessing the robustness of real options for the Blue Nile[J]. Water Resources Research, 2014,50(3):2086-2107.
    [6]Fathelrahman E, Davies A, Davies S, et al. Assessing climate change impacts on water resources and Colorado agriculture using an equilibrium displacement mathematical programming model[J]. Water, 2014,6(6):1745-1770.
    [7]Al-Kalbani M S, Price M F, Abahussain A, et al. Vulnerability assessment of environmental and climate change impacts on water resources in Al Jabal Al Akhdar, Sultanate of Oman[J]. Water, 2014,6(10):3118-3135.
    [8]Collet L, Ruelland D, Borrell-Estupina V, et al. Assessing the long-term impact of climatic variability and human activities on the water resources of a meso-scale Mediterranean catchment[J]. Hydrological Sciences Journal, 2014,59(8):1457-1469.
    [9]Dessu S B, Melesse A M, Bhat M G, et al. Assessment of water resources availability and demand in the Mara River Basin[J]. Catena, 2014,115:104-114.
    [10]Renzullo L J, Van Dijk A, Perraud J M, et al. Continental satellite soil moisture data assimilation improves root-zone moisture analysis for water resources assessment[J]. Journal of hydrology, 2014,519:2747-2762.
    [11]Burnet J B, Penny C, Ogorzaly L, et al. Spatial and temporal distribution of Cryptosporidium and Giardia in a drinking water resource:implications for monitoring and risk assessment[J]. Science of the Total Environment, 2014,472:1023-1035.
    [12]De Freitas C R, Helbig M, Matzarakis A. Hydroclimatic assessment of water resources of low Pacific islands: evaluating sensitivity to climatic change and variability[J]. International Journal of Climatology, 2014,34(3):881-892.
    [13]Tshimanga R M, Hughes D A. Basin-scale performance of a semidistributed rainfall-runoff model for hydrological predictions and water resources assessment of large rivers: The Congo River[J]. Water Resources Research, 2014,50(2):1174-1188.
    [14]Hartmann A, Weiler M, Wagener T, et al. Process-based karst modelling to relate hydrodynamic and hydrochemical characteristics to system properties[J]. Hydrology and Earth System Sciences Discussions, 2013,17(8):3305-3321.
    [15]Nguyen N T, Pham N H, Pham X C, et al. Application of multimedia methodology for investigation of karst water in highland regions of Ha Giang Province, Vietnam[J]. Environmental Earth Sciences, 2013,70(2):531-542.
    [16]Pretzsch H, R?tzer T, Matyssek R, et al. Mixed Norway spruce (Picea abies L. Karst) and European beech (Fagus sylvatica L.) stands under drought: from reaction pattern to mechanism[J]. Trees, 2014,28(5):1305-1321.
    [17]Hauwert N M, Sharp J M. Measuring autogenic recharge over a karst aquifer utilizing eddy covariance evapotranspiration[J]. Journal of Water Resource and Protection, 2014,6(9):869-879.
    [18]Allocca V, Manna F, De Vita P. Estimating annual groundwater recharge coefficient for karst aquifers of the southern Apennines(Italy)[J]. Hydrology and Earth System Sciences, 2014,18(2):803-817.
    [19]Ringgaard R, Herbst M, Friborg T. Partitioning forest evapotranspiration: Interception evaporation and the impact of canopy structure, local and regional advection[J]. Journal of Hydrology, 2014,517:677-690.
    [20]Kong-A-Siou L, Fleury P, Johannet A, et al. Performance and complementarity of two systemic models (reservoir and neural networks) used to simulate spring discharge and piezometry for a karst aquifer[J]. Journal of Hydrology, 2014,519:3178-3192.
    [21]Govender Y, Cuevas E, Sternberg L D S, et al. Temporal variation in stable isotopic composition of rainfall and groundwater in a tropical dry forest in the northeastern Caribbean[J]. Earth Interactions, 2013,17:1-20.
    [22]芦晓峰,孙毅,李波,等.城市化进程中雨水资源利用研究[J].水土保持研究,2011,18(3):267-271.
    [23]李方红,李援农,李铎.石家庄市城镇化后雨水资源利用的潜力分析[J].水资源与水工程学报,2011,22(3):168-170.
    [24]赵丹丹,冯利华,王亚丽.金华市雨水资源化潜力及效益评价[J].水资源与水工程学报,2011,22(1):36-39.
    [25]Liu M, Xu X, Sun A Y, et al. Evaluation of high-resolution satellite rainfall products using rain gauge data over complex terrain in southwest China[J]. Theoretical and applied climatology, 2015,119(1/2):203-219.
    [26]Li L, Kuang Z, Mo J, et al. Assessment of risk ranking for autumn drought in Guangxi province based on AHP and GIS[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013,29(19):193-201.
    [27]李红军,曹建生,张万军.流域雨水资源化目标潜力计算模型研究[J].干旱地区农业研究,2005,23(2):159-163.
    [28]赵西宁,吴普特,冯浩,等.基于GIS的区域雨水资源化潜力评价模型研究[J].农业工程学报,2007,23(2):6-10.
    [29]张建新,郑大玮,武永利.基于3S技术的可收集雨水资源潜力的计算与分析[J].农业工程学报,2006,22(10):40-44.
    [30]宋进喜,宋令勇,何艳芬,等.基于GIS的西安市雨水收集潜力估算[J].干旱区地理,2009,32(6):874-879.
    [31]孙静愚,田文君,乔建民,等.基于GIS的平原区雨水资源潜力估算与利用研究:以崂山区为例[J].测绘与空间地理信息,2013,36(9):76-79.
    [32]李森,魏兴琥,张素红,等.典型岩溶山区土地石漠化过程:以粤北岩溶山区为例[J].生态学报,2010,30(3):674-684.
    [33]陆冠尧,魏兴琥,李森,等.粤北石漠化地区碳酸盐岩溶试验研究[J].中国沙漠,2013,33(3):819-825.
    [34]陆冠尧,李森,魏兴琥,等.粤北石漠化地区植被退化过程及其建模[J].生态学杂志,2013,32(6):1629-1635.
    [35]黄金国,魏兴琥,王兮之.粤北岩溶山区土地石漠化成因及其生态经济治理模式[J].水土保持研究,2013,20(4):105-109.
    [36]沈文娟,李明诗.基于长时间序列Landsat影像的南方人工林干扰与恢复制图分析[J].生态学报,2017,37(5):1438-1449.
    [37]邓书斌,陈秋锦,杜会建.ENVI遥感图像处理方法[M].2版.北京:高等教育出版社,2014.
    [38]刘纪远.中国资源环境遥感宏观调查与动态研究[M].北京:中国科学技术出版社,1996.
    [39]Liu Jiyuan, Liu Mingliang, Deng Xiangzheng, et al. The land use and land cover change database and its relative studies in China[J]. Journal of Geographical Sciences, 2002,12(3):275-282.
    [40]刘纪远,张增祥,徐新良,等.21世纪初中国土地利用变化的空间格局与驱动力分析[J].地理学报,2009,64(12):1411-1420.
    [41]徐新良,刘纪远,庄大方.国家尺度土地利用/覆被变化遥感监测方法[J].安徽农业科学,2012,40(4):2365-2369.
    [42]胡良军,李锐,杨勤科.基于GIS的区域水土流失评价模型[J].应用基础与工程科学学报,2000,8(1):1-8.
    [43]赵西宁,吴普特,冯浩.黄土高原小流域雨水资源化潜力及其可持续利用分析[J].农业工程学报,2005,21(7):38-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700