可降解非金属类合成骨组织再生材料研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress on biodegradable non-metallic synthetic bone tissue regeneration materials
  • 作者:陶春杰 ; 余铃 ; 郭良煜 ; 陈敬腾 ; 郭卫春
  • 英文作者:TAO Chunjie;YU Ling;GUO Liangyu;CHEN Jingteng;GUO Weichun;Department of Orthopedics, Renmin Hospital of Wuhan University;
  • 关键词:可降解 ; 生物陶瓷 ; 生物玻璃 ; 水凝胶 ; 骨修复
  • 英文关键词:Degradable;;Bioceramics;;Bioglass;;Hydrogel;;Bone repairing
  • 中文刊名:YYCY
  • 英文刊名:China Medical Herald
  • 机构:武汉大学人民医院骨科;
  • 出版日期:2019-07-05
  • 出版单位:中国医药导报
  • 年:2019
  • 期:v.16;No.513
  • 基金:国家自然科学基金青年科学基金资助项目(81502575)
  • 语种:中文;
  • 页:YYCY201919009
  • 页数:4
  • CN:19
  • ISSN:11-5539/R
  • 分类号:49-52
摘要
骨缺损的治疗仍是骨科医疗的一大挑战。使用某些植入材料可完成大块骨缺损修补。新可降解骨再生材料的开发、对已有骨修复材料的改性和应用新的制备工艺是骨修复材料研究领域发展的趋势。在可降解非金属类合成材料中,生物陶瓷与骨质的成分相似,且具有相对较高的强度,是应用最广的可降解骨修复材料。生物玻璃能与机体组织形成紧密连接,可用于骨科植入物的表面处理以提高植入物相容性。生物聚合物的生物活性高、结构疏松,在组织工程中具有巨大应用价值。这类材料应用策略的制订需要包括材料科学、生物科学、临床医学等多学科的综合方案,技术手段包括新配方开发、添加剂掺杂、新制备工艺应用等。本文将综述几类可生物降解合成骨组织再生材的优缺点、研发和制备进展。
        The treatment of bone defects is still a major challenge for orthopedics. Large bone defect repair can be accomplished using certain implant materials. The development of new degradable bone regeneration materials, the modification of existing bone repair materials and the application of new preparation processes are the development trends in the field of bone repair materials research. Among the biodegradable non-metallic synthetic materials, bioceramics are the most widely used biodegradable bone repair materials because of their similar composition and relatively high strength. Bioglass can form a tight connection with body tissue and can be used for surface treatment of orthopedic implants to improve implant compatibility. Biopolymers have high biological activity and loose structure, and have great application value in tissue engineering. The formulation of strategies for the application of this kind of materials should include comprehensive plans of materials science, biology science, clinical medicine and other disciplines. The technical means include the development of new formulations, doping of additives, application of new preparation techniques,etc. This article will review the advantages, disadvantages, development and preparation of these types of biodegradable synthetic bone tissue recycled materials.
引文
[1] Sanzana ES,Navarro M,Ginebra MP,et al. Role of porosity and pore architecture in the in vivo bone regeneration capacity of biodegradable glass scaffolds[J]. J Biomed Mater Res A,2014,102(6):1767-1773.
    [2] Draenert M,Draenert A,Draenert K. Osseointegration of hydroxyapatite and remodeling-resorption of tricalciumphosphate ceramics[J]. Microsc Res Techniq,2013,76(4):370-380.
    [3] Lu L,Zhang Q,Wootton DM,et al. Mechanical study of polycaprolactone-hydroxyapatite porous scaffolds created by porogen-based solid freeform fabrication method[J]. J Appl Biomater Func,2014,12(3):145-154.
    [4] Pati F,Song TH,Rijal G,et al. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration[J]. Biomaterials,2015,37:230-241.
    [5] Li HC,Wang DG,Chen CZ,et al. Preparation and characterization of laser cladding wollastonite derived bioceramic coating on titanium alloy[J]. Biointerphases,2015,10(3):031007.
    [6] Zhu H,Guo D,Qi W,et al. Development of Sr-incorporated biphasic calcium phosphate bone cement[J]. Biomed Mater,2017,12(1):015016.
    [7] Hu D,Li K,Xie Y,et al. Different response of osteoblastic cells to Mg2+,Zn2+and Sr2+doped calcium silicate coatings[J].J Mater Sci-Mater M,2016,27(3):56.
    [8] Faruq O,Kim B,Padalhin AR,et al. A hybrid composite system of biphasic calcium phosphate granules loaded with hyaluronic acid-gelatin hydrogel for bone regeneration[J]. J Biomater Appl,2017,32(4):433-445.
    [9] Liu C,Zhai H,Zhang Z,et al. Cells Recognize and Prefer Bone-like Hydroxyapatite:Biochemical Understanding of Ultrathin Mineral Platelets in Bone[J]. Acs Appl Mater Inter,2016,8(44):29 997-30 004.
    [10] Prakasam M,Locs J,Salma-Ancane K,et al. Fabrication,Properties and Applications of Dense Hydroxyapatite:A Review[J]. J Func Biomater,2015,6(4):1099-1140.
    [11] Nabiyouni M,Bruckner T,Zhou H,et al. Magnesium-based bioceramics in orthopedic applications[J]. Acta Biomater,2018,66:23-43.
    [12] Kim JA,Yun HS,Choi YA,et al. Magnesium phosphate ceramics incorporating a novel indene compound promote osteoblast differentiation in vitro and bone regeneration in vivo[J]. Biomaterials,2018,157:51-61.
    [13] Mestres G,Ginebra MP. Novel magnesium phosphate cements with high early strength and antibacterial properties[J]. Acta Biomater,2011,7(4):1853-1861.
    [14] Meininger S,Mandal S,Kumar A,et al. Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds[J]. Acta Biomater,2016,31:401-411.
    [15] Kazemi A,Abdellahi M,Khajeh-Sharafabadi A,et al.Study of in vitro bioactivity and mechanical properties of diopside nano-bioceramic synthesized by a facile method using eggshell as raw material[J]. Mater Sci Eng C Mater Biol Appl,2017,71:604-610.
    [16] Ren Y,Sikder P,Lin B,et al. Microwave assisted coating of bioactive amorphous magnesium phosphate(AMP)on polyetheretherketone(PEEK)[J]. Mater Sci Eng C Mater Biol Appl,2018,85:107-113.
    [17] Peitl O,Zanotto ED,Serbena FC,et al. Compositional and microstructural design of highly bioactive P2O5-Na2OCaO-SiO2glass-ceramics[J]. Acta Biomater,2012,8(1):321-332.
    [18] Jones JR. Reprint of:Review of bioactive glass:From Hench to hybrids[J]. Acta Biomater,2015,23 Suppl:S53-S82.
    [19] Stevensson B,Yu Y,Eden M. Structure-composition trends in multicomponent borosilicate-based glasses deduced from molecular dynamics simulations with improved B-O and P-O force fields[J]. Phys Chem Chem Phys,2018,20(12):8192-8209.
    [20] Nommeots-Nomm A,Labbaf S,Devlin A,et al. Highly degradable porous melt-derived bioactive glass foam scaffolds for bone regeneration[J]. Acta Biomater,2017,57:449-461.
    [21] Singh BN,Pramanik K. Development of novel silk fibroin/polyvinyl alcohol/sol-gel bioactive glass composite matrix by modified layer by layer electrospinning method for bone tissue construct generation[J]. Biofabrication,2017,9(1):015028.
    [22] Poh PSP,Hutmacher DW,Holzapfel BM,et al. In vitro and in vivo bone formation potential of surface calcium phosphate-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds[J]. Acta Biomater,2016,30:319-333.
    [23] Cattini A,Bellucci D,Sola A,et al. Microstructural design of functionally graded coatings composed of suspension plasma sprayed hydroxyapatite and bioactive glass[J].J Biomed Mater Res B,2014,102(3):551-560.
    [24] Chen Q,Cabanas-Polo S,Goudouri OM,et al. Electrophoretic co-deposition of polyvinyl alcohol(PVA)reinforced alginate-Bioglass(R)composite coating on stainless steel:mechanical properties and in-vitro bioactivity assessment[J]. Mater Sci Eng C Mater Biol Appl,2014,40:55-64.
    [25] Annabi N,Tamayol A,Uquillas JA,et al. 25th anniversary article:Rational design and applications of hydrogels in regenerative medicine[J]. Adv Mater,2014,26(1):85-123.
    [26] Kissling S,Seidenstuecher M,Pilz IH,et al. Sustained release of rhBMP-2 from microporous tricalciumphosphate using hydrogels as a carrier[J]. Bmc Biotechnol,2016,16(1):44.
    [27] Schiavi J,Reppel L,Charif N,et al. Mechanical stimulations on human bone marrow mesenchymal stem cells enhance cells differentiation in a three-dimensional layered scaffold[J]. J Tissue Eng Regen M,2018,12(2):360-369.
    [28] Ortega Z,Aleman ME,Donate R. Nanofibers and Microfibers for Osteochondral Tissue Engineering[J]. Adv Exp Med Biol,2018,1058:97-123.
    [29] Kim BR,Nguyen TB,Min YK,et al. In vitro and in vivo studies of BMP-2-loaded PCL-gelatin-BCP electrospun scaffolds[J]. Tissue Eng A,2014,20(23/24):3279-3289.
    [30] Gamie Z,Macfarlane RJ,Tomkinson A,et al. Skeletal tissue engineering using mesenchymal or embryonic stem cells:clinical and experimental data[J]. Expert Opin Biol Th,2014,14(11):1611-1639.
    [31] Priddy LB,Chaudhuri O,Stevens HY,et al. Oxidized alginate hydrogels for bone morphogenetic protein-2 delivery in long bone defects[J]. Acta Biomater,2014,10(10):4390-4399.
    [32] Sithole MN,Kumar P,du Toit LC,et al. A 3D bioprinted in situ conjugated-co-fabricated scaffold for potential bone tissue engineering applications[J]. J Biomed Mater Res A,2018,106(5):1311-1321.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700