原核生物转录组研究的现状与进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Current Status and Progress on Prokaryotic Transcriptome Study
  • 作者:刘梦圆 ; 冷艳 ; 翟立翔 ; 何丽芳 ; 李师翁
  • 英文作者:LIU Meng-yuan;LENG Yan;ZHAI Li-xiang;HE LI-fang;LI Shi-weng;School of Chemical and Biological Engineering,Lanzhou Jiaotong University;
  • 关键词:原核生物 ; 转录组 ; 降解菌 ; 致病菌
  • 英文关键词:prokaryotes;;transcriptome;;degradation bacteria;;pathogenic bacteria
  • 中文刊名:SWJT
  • 英文刊名:Biotechnology Bulletin
  • 机构:兰州交通大学化学与生物工程学院;
  • 出版日期:2019-04-28 09:50
  • 出版单位:生物技术通报
  • 年:2019
  • 期:v.35;No.323
  • 基金:国家自然科学基金项目(31760110)
  • 语种:中文;
  • 页:SWJT201906023
  • 页数:8
  • CN:06
  • ISSN:11-2396/Q
  • 分类号:170-177
摘要
转录技术在原核生物转录组研究上的突破,已经显示出其在揭示原核生物生命过程的分子机制上独特的优势。对原核生物的转录组研究开始于致病菌,近年来,通过转录组学分析原核生物对污染物的降解机制已成为研究热点。通过多组学整合分析,对降解菌的代谢机理、作用机制及转录相关基因进行深入探究。综述了原核生物转录组研究的现状及进展,即介绍了响应重金属及芳香族化合物、石油烃等有机污染物的降解菌种类及其转录组特征;重点关注了致病菌的转录组研究,包括人类、动植物致病菌的种类、性质及其转录组特征;并对原核生物的转录组研究在未来的发展和应用进行了展望,旨在为原核生物在环境污染治理和致病菌引起的人类和动植物疾病的防控奠定重要理论基础。
        The breakthrough of transcriptional technology in studying prokaryotes transcriptome has shown its unique advantage in revealing the molecular mechanism of prokaryotes' life process. The transcriptome study of prokaryotes began with pathogenic bacteria,and recently the transcriptome analysis of the degradation mechanism of pollutants by prokaryotes has become a research focus. The metabolic mechanism,mechanism of action and transcription-related genes of degrading bacteria were further explored through multi-histological integration analysis. In this paper,the status and progress of the study on prokaryotic transcriptome are reviewed,i.e.,the degradation bacteria and their transcriptome characteristics in response to heavy metals,aromatic compounds,petroleum hydrocarbons and other organic pollutants are introduced. The transcriptome study of pathogenic bacteria is also focused,including human,animal and plant pathogenic bacteria species,nature,and transcriptome characteristics. The future development and application of transcriptome research in prokaryotes are also prospected. It aims to lay an important theoretical foundation for prokaryotes in environmental pollution control as well as prevention and control of human and animal and plant diseases caused by pathogenic bacteria.
引文
[1] Piétu G, Eveno E, Sourysegurens B, et al. The genexpress image knowledge base of the human muscle transcriptome:a resource of structural, functional, and positional candidate genes for muscle physiology and pathologies[J]. Genome Research, 1999, 9(12):1313-1320.
    [2]Filiatrault MJ. Progress in prokaryotic transcriptomics[J]. Current Opinion in Microbiology, 2011, 14(5):579-586.
    [3]Roane TM, Pepper IL, Gentry TJ. Microorganisms and metal pollutants[J]. Environmental Microbiology, 2015:415-439.
    [4]Wenjing L, Yanan W, Chuanyong J. Transcriptome analysis of silver, palladium, and selenium stresses in Pantoea sp. IMH[J].Chemosphere, 2018, 208:50-58.
    [5]Zhang X, Wu W, Virgo N, et al. Global transcriptome analysis of hexavalent chromium stress responses in Staphylococcus aureus LZ-01[J]. Ecotoxicology, 2014, 23(8):1534-1545.
    [6]Chourey K, Thompson MR, Morrell-Falvey J, et al. Global molecular and morphological effects of 24-hour chromium(VI)exposure on Shewanella oneidensis MR-1[J]. Applied and Environmental Microbiology, 2006, 72(9):6331-6344.
    [7]Dávila Costa JS, Kothe E, Abate CM, et al. Unraveling the Amycolatopsis tucumanensis copper-resistome[J]. Biometals,2012, 25(5):905-917.
    [8]Clauss-Lendzian E, Vaishampayan A, De JA, et al. Stress response of a clinical Enterococcus faecalis isolate subjected to a novel antimicrobial surface coating[J]. Microbiological Research, 2018,207:53-64.
    [9]Saulou-Bérion C, Ignacio G, Brice E, et al. Escherichia coli under ionic silver stress:an integrative approach to explore transcriptional, physiological and biochemical responses[J]. PLoS One, 2015, 10(12):e0145748.
    [10]Bego?aáguila-Clares, Castiblanco LF, JoséManuel Quesada, et al. Transcriptional response of Erwinia amylovora upon copper shock:in vivo role of the copA gene[J]. Molecular Plant Pathology, 2017, 19(1):169-179.
    [11]Gault M, Effantin G, Rodrigue A. Ni exposure impacts the pool of free Fe and modifies DNA supercoiling via metal-induced oxidative stress in Escherichia coli K-12[J]. Free Radical Biology and Medicine, 2016, 97:351-361.
    [12]Vannini A, Pinatel E, Costantini PE, et al. Comprehensive mapping of the Helicobacter pylori NikR regulon provides new insights in bacterial nickel responses[J]. Scientific Reports, 2017, 7:45458.
    [13]Gu W, Semrau JD. Copper and cerium-regulated gene expression in Methylosinus trichosporium OB3b[J]. Applied Microbiology&Biotechnology, 2017, 101(23-24):8499-8516.
    [14]Marcus SA, Sidiropoulos SW, Steinberg H, et al. CsoR is essential for maintaining copper homeostasis in Mycobacterium tuberculosis[J]. PLoS One, 2016, 11(3):e0151816.
    [15]Larsen?, Karlsen OA. Transcriptomic profiling of Methylococcus capsulatus(Bath)during growth with two different methane monooxygenases[J]. Microbiologyopen, 2016, 5(2):254-267.
    [16]Quintana J, Novoaaponte L, Argüello JM. Copper homeostasis networks in the bacterium Pseudomonas aeruginosa[J]. Journal of Biological Chemistry, 2017, 292(38):15691-15704.
    [17]Zhang H, Ma Y, Liu P, et al. Multidrug resistance operon emrAB contributes for chromate and ampicillin co-resistance in a Staphylococcus strain isolated from refinery polluted river bank[J]. Springerplus, 2016, 5(1):1648-1659.
    [18]Irfan M, Sulman S, Kuipers OP, et al. Ni2+dependent and psaR mediated regulation of the virulence genes pcpA, psaBCA, and prtA in Streptococcus pneumoniae[J]. PLoS One, 2015, 10(11):e0142839.
    [19]Chen Y, Huang C, Bai C, et al. Benzo[α]pyrene repressed DNA mismatch repair in human breast cancer cells[J]. Toxicology,2013, 304:167-172.
    [20]Br?ndli RC, Bucheli TD, Ammann S, et al. Critical evaluation of PAH source apportionment tools using data from the Swiss soil monitoring network[J]. Journal of Environmental Monitoring,2008, 10(11):1278-1286.
    [21]Nguyen VD, Wolf C, M?der U, et al. Transcriptome and proteome analyses in response to 2-methylhydroquinone and 6-brom-2-vinylchroman-4-on reveal different degradation systems involved in the catabolism of aromatic compounds in Bacillus subtilis[J].Proteomics, 2007, 7(9):1391-1408.
    [22]Atago Y, Shimodaira J, Araki N, et al. Identification of novel extracellular protein for PCB/biphenyl metabolism in Rhodococcus jostii RHA1[J]. Journal of the Agricultural Chemical Society of Japan, 2016, 80(5):1012-1019.
    [23]Brune I, Becker A, Paarmann D, et al. Under the influence of the active deodorant ingredient 4-hydroxy-3-methoxybenzyl alcohol,the skin bacterium Corynebacterium jeikeium moderately responds with differential gene expression[J]. Journal of Biotechnology,2006, 127(1):21-33.
    [24]Cheng Y, Zang H, Wang H, et al. Global transcriptomic analysis of, Rhodococcus erythropolis D310-1 in responding to chlorimuronethyl[J]. Ecotoxicology and Environmental Safety, 2018, 157:111-120.
    [25]Das N, Chandran P. Microbial degradation of petroleum hydrocarbon contaminants:An overview[J]. Biotechnology Research International, 2010, 2011(1):1-13.
    [26]Wu XL, Yu SL, Gu J, et al. Filomicrobium insigne sp. nov. isolated from an oil-polluted saline soil[J]. International Journal of Systematic&Evolutionary Microbiology, 2009, 59(2):300-305.
    [27]Van Beilen JB, Funhoff EG. Alkane hydroxylases involved in microbial alkane degradation[J]. Applied Microbiology&Biotechnology, 2007, 74(1):13-21.
    [28]Kothari A, Charrier M, Wu YW, et al. Transcriptomic analysis of the highly efficient oil-degrading bacterium Acinetobacter venetianus RAG-1 reveals genes important in dodecane uptake and utilization[J]. FEMS Microbiology Letters, 2016, 363(20):fnw224.
    [29]Jung J, Jang IA, Ahn S, et al. Molecular mechanisms of enhanced bacterial growth on hexadecane with red clay[J]. Microbial Ecology, 2015, 70(4):912-921.
    [30]Hong YH, Deng MC, Xu XM, et al. Characterization of the transcriptome of Achromobacter sp. HZ01 with the outstanding hydrocarbon-degrading ability[J]. Gene, 2016, 584(2):185-194.
    [31]Scoma A, Barbato M, Hernandez-Sanabria E, et al. Microbial oildegradation under mild hydrostatic pressure(10 MPa):which pathways are impacted in piezosensitive hydrocarbonoclastic bacteria?[J]. Scientific Reports, 2016, 6:23526.
    [32]Jin HM, Jeong HI, Kim KH, et al. Genome-wide transcriptional responses of Alteromonas naphthalenivorans SN2 to contaminated seawater and marine tidal flat sediment[J]. Scientific Reports,2016, 6(1):21796.
    [33]Cruz A, Rodrigues R, Pinheiro M, et al. Transcriptomes analysis of Aeromonas molluscorum Av27 cells exposed to tributyltin(TBT):Unravelling the effects from the molecular level to the organism[J]. Marine Environmental Research, 2015, 109:132-139.
    [34]Scheublin TR, Deusch S, Morenoforero SK, et al. Transcriptional profiling of Gram-positive Arthrobacter in the phyllosphere:induction of pollutant degradation genes by natural plant phenolic compounds[J]. Environmental Microbiology, 2014, 16(7):2212-2225.
    [35]Kun W, Hua Y, Hui P, et al. Bioremediation of triphenyl phosphate in river water microcosms:Proteome alteration of Brevibacillus brevis and cytotoxicity assessments[J]. Science of The Total Environment, 2019, 649:563-570.
    [36]Patrauchan MA, Parnell JJ, Mcleod MP, et al. Genomic analysis of the phenylacetyl-CoA pathway in Burkholderia xenovorans LB400[J]. Archives of Microbiology, 2011, 193(9):641-650.
    [37]Peng X, Yamamoto S, Alain A. Vertès, et al. Global transcriptome analysis of the tetrachloroethene-dechlorinating bacterium Desulfito bacterium hafniense Y51 in the presence of various electron donors and terminal electron acceptors[J]. Journal of Industrial Microbiology&Biotechnology, 2012, 39(2):255-268.
    [38]Johnson DR, Nemir A, Andersen GL, et al. Transcriptomic microarray analysis of corrinoid responsive genes in Dehalococcoides ethenogenes strain 195[J]. FEMS Microbiology Letters, 2010,294(2):198-206.
    [39]Johnson DR, Brodie EL, Hubbard AE, et al. Temporal transcriptomic microarray analysis of Dehalococcoides ethenogenes strain 195 during the transition into stationary phase[J]. Applied&Environmental Microbiology, 2008, 74(9):2864-2872.
    [40]Lee J, Hiibel SR, Reardon KF, et al. Identification of stressrelated proteins in Escherichia coli using the pollutant cisdichloroethylene[J]. J Appl Microbiol, 2010, 108(6):2088-2102.
    [41]Hristova KR, Schmidt R, Chakicherla AY, et al. Comparative transcriptome analysis of Methylibium petroleiphilum PM1 exposed to the fuel oxygenates methyl tert-butyl ether and ethanol[J].Applied&Environmental Microbiology, 2007, 73(22):7347-7357.
    [42]Fida TT, Moreno-Forero SK, Breugelmans P, et al. Physiological and transcriptome response of the polycyclic aromatic hydrocarbon degrading Novosphingobium sp. LH128 after inoculation in soil[J]. Environmental Science&Technology, 2017, 51(3):1570-1579.
    [43]Guan X, Liu F, Wang J, et al. Mechanism of 1, 4-dioxane microbial degradation revealed by 16S rRNA and metatranscriptomic analyses[J]. Water Science&Technology A Journal of the International Association on Water Pollution Research, 2018, 77(1):123-133.
    [44]Chen Q, Tu H, Luo X, et al. The regulation of para-nitrophenol degradation in Pseudomonas putida DLL-E4[J]. PLoS One,2016, 11(5):e0155485.
    [45]Dubey SK, Tokashiki T, Suzuki S. Microarray-mediated transcriptome analysis of the tributyltin(TBT)-resistant bacterium Pseudomonas aeruginosa 25W in the presence of TBT[J]. Journal of Microbiology, 2006, 44(2):200-205.
    [46]Muller JF, Stevens AM, Craig J, et al. Transcriptome analysis reveals that multidrug efflux genes are upregulated to protect Pseudomonas aeruginosa from pentachlorophenol stress[J].Applied&Environmental Microbiology, 2007, 73(14):4550-4558.
    [47]Yang X, Xi J. Transcriptomic and benzoate metabolic pathways of Rhodococcus sp. R04 cultured in biphenyl[J]. Acta Microbiologica Sinica, 2015, 55(7):851-862.
    [48]Edmilson R. Gon?alves, Hara H, Miyazawa D, et al. Transcriptomic assessment of isozymes in the biphenyl pathway of Rhodococcus sp.strain RHA1[J]. Applied&Environmental Microbiology, 2006,72(9):6183-6193.
    [49]Sharp JO, Sales CM, Leblanc JC, et al. An inducible propane monooxygenase is responsible for n-nitrosodimethylamine degradation by Rhodococcus sp. strain RHA1[J]. Applied and Environmental Microbiology, 2007, 73(21):6930-6938.
    [50]Benli C, Tsoi TV, Shoko I, et al. Sphingomonas wittichii strain RW1genome-wide gene expression shifts in response to dioxins and clay[J]. PLoS One, 2016, 11(6):e0157008.
    [51]Morenoforero SK, Meer JRVD. Genome-wide analysis of Sphingomonas wittichii RW1 behaviour during inoculation and growth in contaminated sand[J]. Isme Journal, 2014, 9(1):150-165.
    [52]Benjak A, Uplekar S, Zhang M, et al. Genomic and transcriptomic analysis of the streptomycin-dependent Mycobacterium tuberculosis strain 18b[J]. Bmc Genomics, 2016, 17(1):190-204.
    [53]Lin L, Dai X, Ying W, et al. RNA-seq-based analysis of drugresistant Salmonella enterica serovar Typhimurium selected in vivo and in vitro[J]. PLoS One, 2017, 12(4):e0175234.
    [54]李贵阳,莫照兰,李杰.海水病原鳗弧菌M3体外转录表达分析[C]中国水产学会鱼病专业委员会2013年学术研讨会论文摘要汇编. 2013.
    [55]Hingston P, Chen J, Allen K, et al. Strand specific RNA-sequencing and membrane lipid profiling reveals growth phase-dependent cold stress response mechanisms in Listeria monocytogenes[J]. PLoS One, 2017, 12(6):e0180123.
    [56]Willig CJ, Duan K, Zhang ZJ. Transcriptome profiling of plant genes in response to Agrobacterium tumefaciens-mediated transformation[J]. 2018, 418:319-348.
    [57]Carlson PE, Bourgis AET, Hagan AK, et al. Global gene expression by Bacillus anthracis during growth in mammalian blood[J].Pathogens and Disease, 2015, 73(8):ftv061.
    [58]Manuel W, Tobias B, Gaspar AH, et al. Transcriptome sequencing of the human pathogen Corynebacterium diphtheriae NCTC 13129provides detailed insights into its transcriptional landscape and into DtxR-mediated transcriptional regulation[J]. BMC Genomics,2018, 19(1):82-99.
    [59]Kathleen N, Ryan MC, Matthew M, et al. Transcriptome Analysis of Neisseria gonorrhoeae during natural infection reveals differential expression of antibiotic resistance determinants between men and women[J]. Msphere, 2018, 3(3):e00312-e00318.
    [60]Cruz-Rabadán JS, Miranda-Ríos J, Espín-Ocampo G, et al. Noncoding RNAs are differentially expressed by nocardia brasiliensis in vitro and in experimental actinomycetoma[J]. Open Microbiology Journal, 2017, 11:112-125.
    [61]Machuca A, Martinez V. Transcriptome analysis of the intracellular facultative pathogen Piscirickettsia salmonis:expression of putative groups of genes associated with virulence and iron metabolism[J]. PLoS One, 2016, 11(12):e0168855.
    [62]Marrer E, Satoh AT, Johnson MM, et al. Global transcriptome analysis of the responses of a fluoroquinolone-resistant Streptococcus pneumoniae mutant and its parent to ciprofloxacin[J].Antimicrobial Agents&Chemotherapy, 2006, 50(1):269-278.
    [63]马月姣.酸耐受副溶血性弧菌生物学特性及转录组、蛋白组分析[D].上海:上海海洋大学, 2016.
    [64]Sánchez J, Holmgren J. Cholera toxin structure, gene regulation and pathophysiological and immunological aspects[J]. Cellular&Molecular Life Sciences, 2008, 65(9):1347-1360.
    [65]陈保立.霍乱弧菌活的非可培养状态的转录组及蛋白组研究[D].北京:中国疾病预防控制中心, 2013.
    [66]Chen X, Sun C, Laborda P, et al. Melatonin treatment inhibits the growth of Xanthomonas oryzae pv. oryzae[J]. Frontiers in Microbiology, 2018, 9:2280.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700