哨兵-2号光学影像地表形变监测:以2016年M_W7.8新西兰凯库拉地震为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Coseismic displacements of 2016 M_W7.8 Kaikoura, New Zealand earthquake, using Sentinel-2 optical images
  • 作者:贺礼家 ; 冯光财 ; 冯志雄 ; 高华
  • 英文作者:HE Lijia;FENG Guangcai;FENG Zhixiong;GAO Hua;Laboratory of Radar Remote Sensing, School of Geoscience and Info-Physics, Central South University;Faculty of Geomatics, East China University of Technology;
  • 关键词:光学影像 ; 哨兵-2号 ; 新西兰凯库拉地震 ; 同震形变
  • 英文关键词:optical imagery;;Sentinel-2;;New Zealand Kaikoura earthquake;;coseismic displacements
  • 中文刊名:CHXB
  • 英文刊名:Acta Geodaetica et Cartographica Sinica
  • 机构:中南大学地球科学与信息物理学院雷达遥感研究室;东华理工大学测绘工程学院;
  • 出版日期:2019-03-15
  • 出版单位:测绘学报
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学基金(41574005);; 中南大学升华育英计划基金~~
  • 语种:中文;
  • 页:CHXB201903010
  • 页数:13
  • CN:03
  • ISSN:11-2089/P
  • 分类号:75-87
摘要
光学影像已经广泛地应用于地表形变监测研究。哨兵-2号光学影像作为一种新的对地观测数据,具有重访周期短、空间分辨率高、影像覆盖范围大以及数据免费等优点,因此该数据在地表形变监测上有广泛的应用潜力。本文以COSI-Corr软件包为数据处理平台,基于亚像素的频率域相关性匹配技术,处理多时相的哨兵-2号数据获取地表形变。本文选取2016年M_w7.8新西兰凯库拉(Kaikoura)地震覆盖区域为例,对哨兵-2号影像地表形变中存在的各种系统误差源进行了系统分析和改正,并提出了改进的均值相减法去除形变场中的卫星姿态角误差。另外,还对哨兵-2号4个10m空间分辨率的波段(Band 2/3/4/8)中可用于地表形变监测的最佳波段进行了分析,统计结果显示Band8的地表形变监测效果最好。最后,利用哨兵-2号光学影像获取了2016年11月14日M_w7.8新西兰凯库拉地震的同震形变场;分析了沿地震主要断层的滑移分布,结果表明最大水平滑移量达10m;并与同期Landsat8全色影像的同震形变监测结果进行对比分析,结果表明哨兵-2号结果精度更高。本文的研究成果可以为哨兵-2号光学影像的应用提供参考。
        Optical imagery has been widely applied to monitor the earth surface changes. Sentinel-2 satellite constellation launched lately, provides optical images with short revisit cycle, high spatial resolution, large coverage and free accessibility. Thus it has great potential in surface deformation mornitoring. Based on the coregistration of optically sensed images and correlation(COSI-Corr) software package, we obtained the ground deformation field of the 2016 M_W7.8 Kaikoura, New Zealand Earthquake from the multi-temporal Sentinel-2 data, using the sub-pixel cross-correlation technique. We systematically analyzed the system error sources of Sentinel-2 image pairs and proposed a modified subtraction method to mitigate the satellite attitude jitter distortions in the deformation field. Then, we compared the results of four bands(Band 2/3/4/8)with the spatial resolution of 10-meter and the statistic results show that Band8 is the optimum band for ground deformation monitoring. Moreover, we mapped the coseismic displacement field of the earthquake from Sentinel-2 optical images, and analyzed the slip distribution along the major faults. The results indicate that the maximum horizontal slip is up to 10 meters. For accuracy evaluation, we also calculated the coseismic displacement field of this event using the Landsat8 panchromatic images. The results indicate that Sentinel-2 has higher precision for the ground deformations monitoring. This research provides a good reference for the application of the Sentinel-2 optical images in future.
引文
[1] VAN PUYMBROECK N, MICHEL R, BINET R, et al. Measuring earthquakes from optical satellite images[J]. Applied Optics, 2000, 39(20): 3486-3494.
    [2] MICHEL R, AVOUAC J P, TABOURY J. Measuring near field coseismic displacements from SAR images: application to the landers earthquake[J]. Geophysical Research Letters, 1999, 26(19): 3017-3020.
    [3] CRIPPEN R E, BLOM R G. Measurement of subresolution terrain displacements using spot panchromatic imagery[C]//Remote Sensing: Global Monitoring for Earth Management. Espoo, Finland: IEEE, 1991: 1667-1670.
    [4] MICHEL R, AVOUAC J P. Deformation due to the 17 August 1999 Izmit, Turkey, earthquake measured from SPOT images[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B4): ETG 2-1-ETG 2-6.
    [5] BINET R, BOLLINGER L. Horizontal coseismic deformation of the 2003 Bam (Iran) earthquake measured from SPOT-5 THR satellite imagery[J]. Geophysical Research Letters, 2005, 320(2): L02307.
    [6] KLINGER Y, MICHEL R, KING G C P. Evidence for an earthquake barrier model from MW 7.8 Kokoxili (Tibet) earthquake slip-distribution[J]. Earth and Planetary Science Letters, 2006, 242(3-4): 354-364.
    [7] LEPRINCE S, BARBOT S, AYOUB F, et al. Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(6): 1529-1558.
    [8] TAYLOR M H, LEPRINCE S, AVOUAC J P, et al. Detecting co-seismic displacements in glaciated regions: an example from the great november 2002 Denali earthquake using SPOT horizontal offsets[J]. Earth and Planetary Science Letters, 2008, 270(3-4): 209-220.
    [9] KONCA A O, LEPRINCE S, AVOUAC J P, et al. Rupture process of the 1999 MW 7.1 Duzce earthquake from joint analysis of SPOT, GPS, InSAR, strong-motion, and teleseismic data: a supershear rupture with variable rupture velocity[J]. Bulletin of the Seismological Society of America, 2010, 100(1): 267-288.
    [10] AVOUAC J P, AYOUB F, LEPRINCE S, et al. The 2005, MW 7.6 Kashmir earthquake: sub-pixel correlation of ASTER images and seismic waveforms analysis[J]. Earth and Planetary Science Letters, 2006, 249(3-4): 514-528.
    [11] LIU Jianguo, MASON P J, MA Jiming. Measurement of the left-lateral displacement of MS 8.1 Kunlun earthquake on 14 November 2001 using landsat-7 ETM+imagery[J]. International Journal of Remote Sensing, 2006, 27(10): 1875-1891.
    [12] AVOUAC J P, AYOUB F, WEI S J, et al. The 2013, MW 7.7 Balochistan earthquake, energetic strike-slip reactivation of a thrust fault[J]. Earth and Planetary Science Letters, 2014(391): 128-134.
    [13] JOLIVET R, DUPUTEL Z, RIEL B, et al. The 2013 MW 7.7 Balochistan earthquake: seismic potential of an accretionary wedge[J]. Bulletin of the Seismological Society of America, 2014, 104(2): 1020-1030.
    [14] FENG Guangcai, XU Bing, SHAN Xinjian, et al. Coseismic deformation and source parameters of the 24 September 2013 Awaran, Pakistan MW 7.7 earthquake derived from optical Landsat 8 satellite images[J]. Chinese Journal of Geophysics, 2015, 58(5): 1634-1644.
    [15] DING Chao, FENG Guangcai, LI Zhiwei, et al. Spatio-temporal error sources analysis and accuracy improvement in Landsat 8 image ground displacement measurements[J]. Remote Sensing, 2016, 8(11): 937.
    [16] MICHEL R, AVOUAC J P. Coseismic surface deformation from air photos: the Kickapoo step over in the 1992 landers rupture[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B3): B03408.
    [17] AYOUB F, LEPRINCE S, AVOUAC J P. Co-registration and correlation of aerial photographs for ground deformation measurements[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2009, 64(6): 551-560.
    [18] K??B A, ALTENA B, MASCARO J. Coseismic displacements of the 14 November 2016 MW 7.8 Kaikoura, New Zealand, earthquake using an optical cubesat constellation[J]. Natural Hazards & Earth System Sciences, 2017, 17(5): 1-18.
    [19] LEPRINCE S, BERTHIER E, AYOUB F, et al. Monitoring earth surface dynamics with optical imagery[J]. EOS, Transactions American Geophysical Union, 2008, 89(1): 1-2.
    [20] AYOUB F, LEPRINCE S, AVOUAC J P, et al. COSI-corr: a software to monitor ground surface deformation from satellite imagery[C]//Proceedings of the 4th Annual International Planetary Dunes Workshop. USA: [s.n.], 2015.
    [21] BROWN L G. A survey of image registration techniques[J]. ACM Computing Surveys, 1992, 24(4): 325-376.
    [22] REDDY B S, CHATTERJI B N. An FFT-based technique for translation, rotation, and scale-invariant image registration[J]. IEEE Transactions on Image Processing, 1996, 5(8): 1266-1271.
    [23] 陈强, 罗容, 杨莹辉, 等. 利用SAR影像配准偏移量提取地表形变的方法与误差分析[J]. 测绘学报, 2015, 44(3): 301-308. DOI: 10.11947/j.AGCS.2015.20130782.CHEN Qiang, LUO Rong, YANG Yinghui, et al. Method and accuracy of extracting surface deformation field from SAR image coregistration[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(3): 301-308. DOI: 10.11947/j.AGCS.2015.20130782.
    [24] 岳春宇, 江万寿. 几何约束和改进SIFT的SAR影像和光学影像自动配准方法[J]. 测绘学报, 2012, 41(4): 570-576.YUE Chunyu, JIANG Wanshou. An automatic registration algorithm for SAR and optical images based on geometry constraint and improved SIFT[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(4): 570-576.
    [25] 沈飞, 李建成, 张小红, 等. 顾及分段相似性的同震形变时间序列恒星日滤波优化算法[J]. 测绘学报, 2013, 42(4): 487-492.SHEN Fei, LI Jiancheng, ZHANG Xiaohong, et al. The improved sidereal filtering of time series considering segment’s similarity in coseismic displacement[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(4): 487-492.
    [26] FENG Guangcai, DING Xiaoli, LI Zhiwei, et al. Calibration of an InSAR-derived coseimic deformation map associated with the 2011 MW -9.0 tohoku-oki earthquake[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(2): 302-306.
    [27] FENG Guangcai, LI Zhiwei, SHAN Xinjian, et al. Geodetic model of the 2015 april 25 MW 7.8 gorkha nepal earthquake and MW 7.3 aftershock estimated from InSAR and GPS data[J]. Geophysical Journal International, 2015, 203(2): 896-900.
    [28] FENG Guangcai, LI Zhiwei, XU Bing, et al. Coseismic deformation of the 2015 MW 6.4 pishan, China, earthquake estimated from sentinel-1A and ALOS2 data[J]. Seismological Research Letters, 2016, 87(4): 800-806.
    [29] 刘洋, 许才军, 温扬茂, 等. 2008年大柴旦MW 6.3级地震的InSAR同震形变观测及断层参数反演[J]. 测绘学报, 2015, 44(11): 1202-1209. DOI: 10.11947/j.AGCS.2015.20140628.LIU Yang, XU Caijun, WEN Yangmao, et al. The InSAR coseismic deformation observation and fault parameter inversion of the 2008 dachaidan MW 6.3 earthquake[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(11): 1202-1209. DOI: 10.11947/j.AGCS.2015.20140628.
    [30] LEPRINCE S, MUSé P, AVOUAC J P. In-flight CCD distortion calibration for pushbroom satellites based on subpixel correlation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(9): 2675-2683.
    [31] AYOUB F, LEPRINCE S, BINET R, et al. Influence of camera distortions on satellite image registration and change detection applications[C]//Proceedings of IEEE International Geoscience and Remote Sensing Symposium, 2008. Boston, MA, USA: IEEE, 2008: II-1072-II-1075.
    [32] LEPRINCE S, AYOUB F, KLINGERT Y, et al. Co-registration of optically sensed images and correlation (COSI-Corr): an operational methodology for ground deformation measurements[C]//Proceedings of 2007 IEEE International Geoscience and Remote Sensing Symposium, 2007. Barcelona, Spain: IEEE, 2008: 1943-1946.
    [33] DRUSCH M, DEL BELLO U, CARLIER S, et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services[J]. Remote Sensing of Environment, 2012(120): 25-36.
    [34] SHI Xuhua, WANG Yu, JING Liuzeng, et al. How complex is the 2016 MW 7.8 Kaikoura earthquake, South island, New Zealand?[J]. Science Bulletin, 2017, 62(5): 309-311.
    [35] HOLLINGSWORTH J, YE Lingling, AVOUAC J P. Dynamically triggered slip on a splay fault in the MW 7.8, 2016 Kaikoura (New Zealand) earthquake[J]. Geophysical Research Letters, 2017, 44(8): 3517-3525.
    [36] HAMLING I J, HREINSDóTTIR S, CLARK K, et al. Complex multifault rupture during the 2016 MW 7.8 Kaikōura earthquake, New Zealand[J]. Science, 2017, 356(6334): 7194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700