L-缬氨酸对Streptomyces natalensis HW-2合成纳他霉素的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of L-Valine on Biosynthesis of Natamycin by Streptomyces natalensis HW-2
  • 作者:王大红 ; 张颖 ; 郑迎莹 ; 陈亚欣 ; 徐鹏 ; 王子旭
  • 英文作者:WANG Da-hong;ZHANG Ying;ZHENG Ying-ying;CHEN Ya-xin;XU Peng;WANG Zi-xu;Key Laboratory of Microbial Resources Development and Utilization, College of Food & Bioengineering, Henan University of Science and Technology;
  • 关键词:纳他霉素 ; Streptomyces ; natalensis ; HW-2 ; L-缬氨酸 ; 前体 ; 食品用化学品
  • 英文关键词:natamycin;;Streptomyces natalensis HW-2;;L-valine;;precursors;;food chemicals
  • 中文刊名:JXHG
  • 英文刊名:Fine Chemicals
  • 机构:河南科技大学食品与生物工程学院微生物资源开发与利用实验室;
  • 出版日期:2018-12-18 11:53
  • 出版单位:精细化工
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金项目(31401672);; 河南省高校青年骨干教师项目(2016GGJS-060)~~
  • 语种:中文;
  • 页:JXHG201904026
  • 页数:7
  • CN:04
  • ISSN:21-1203/TQ
  • 分类号:174-180
摘要
以Streptomyces natalensis HW-2为研究对象,考察了添加L-缬氨酸对纳他霉素生物合成途径的影响。结果表明:在纳他霉素发酵至36 h时添加0.5 g/L L-缬氨酸,纳他霉素产量达到1.83 g/L,比对照组提高了84.85%。添加L-缬氨酸后引起菌体生物量降低和pH升高,而葡萄糖利用速率加快;胞内丙酮酸激酶(PK)、磷酸烯醇式丙酮酸羧化酶(PEPC)和丙酮酸羧化酶(PC)活性增强,柠檬酸合酶(CS)活力降低了26.57%;发酵液中丙酮酸(色谱法)、草酰乙酸(色谱法)和乙酰辅酶A(分光光度法)的含量分别提高了80.50%、53.28%和47.19%,乙酸(色谱法)、丙酸(色谱法)和α-酮戊二酸(色谱法)的含量分别提高了16.98%、10.65%和15.40%,而柠檬酸(色谱法)的含量降低了27.01%。
        The effect of L-valine(L-Val) on biosynthesis pathway of natamycin by Streptomyces natalensis HW-2 was investigated. The experimental results showed that the maximal yield of natamycin reached 1.83 g/L when the adding amount of L-Val was 0.5 g/L during the fermentation of Streptomyces natalensis HW-2 for 36 h, which was 84.85% higher than that of the control. The addition of L-Val resulted in a decrease of biomass and an increase of pH, and an improvement of glucose utilization. The activities of pyruvate kinase(PK), phosphoenolpyruvate carboxylase(PEPC) and pyruvate carboxylase(PC) in intracellular enhanced,while that of citroyl synthetase(CS) decreased by 26.57%. Comparing with the control, the contents of pyruvic acid, oxaloacetic acid, acetyl-Co A in the broth increased by 80.50%, 53.28% and 47.19%,respectively. And, the contents of acetic acid, propionic acid and α-ketoglutaric acid increased by 16.98%,10.65% and 15.40%, respectively. But, the content of citric acid decreased by 27.01%.
引文
[1]Wu H,Liu W,Shi L,et al.Comparative genomic and regulatory analyses of natamycin production of Streptomyces lydicus A02[J].Scientific Reports,2017,7(1):9114-9126.
    [2]Resa C,Jagus R,Gerschenson L.Natamycin efficiency for controlling yeast growth in models systems and on cheese surfaces[J].Food Control,2014,35(1):101-108.
    [3]Ho P,Luo J,Adams M.Lactobacilli and dairy propionibacterium with potential as biopreservatives against food fungi and yeast contamination[J].Applied Biochemistry and Microbiology,2009,45(4):414-418.
    [4]Li Yu(李昱),Wu Caie(吴彩娥),Fan Gongjian(范龚健),et al.Antimicrobial and preservative effects of natamycin ginkgo fruits[J].Food Science(食品科学),2014,35(4):220-225.
    [5]Sharma S,Das S,Virdi A,et al.Re-appraisal of topical 1%voriconazole and 5%natamycin in the treatment of fungal keratitis in a randomised trial[J].British Journal of Ophthalmology,2015,99(9):1190-1195.
    [6]Sunada A,Kimura K,Nishi I,et al.(2014)In vitro evaluations of topical agents to treat Acanthamoeba keratitis[J].Ophthalmology,2014,121(10):2059-2065.
    [7]Shi Qiang(史强).Study on the promoter of fungal metabolites promoting the synthesis of natamycin[D].Wuxi:Jiangnan University(江南大学),2010.
    [8]Luo Jianmei(骆健美).Breeding of high-yield strains,optimization of fermentation conditions,fermentation kinetics and solubility of natamycin[D].Hangzhou:Zhejiang University(浙江大学),2005.
    [9]Liu S,Yu P,Yuan P,et al.Sigma factor WhiGch,positively regulates natamycin production in Streptomyces chattanoogensis L10[J].Applied Microbiology and Biotechnology,2015,99(6):2715-2726.
    [10]Elsayed A.Improvement in natamycin production by Streptomyces natalensis with the addition of short-chain carboxylic acids[J].Process Biochemistry,2013,48(12):1831-1838.
    [11]Li Min,Chen Shouwen,Li Junhui,et al.Propanol addition improves natamycin biosynthesis of Streptomyces natalensis[J].Applied Biochemistry and Biotechnology,2014,172(7):3424-32.
    [12]Liu Yijun(刘钇君).Study on avermectin precursors metabolic engineering[D].Jinan:Qilu University of Technology,2015.
    [13]Li Zhenlin(李桢林),Jiang Wei(江维),Wang Yonghong(王永红),et al.Effect of valine,isoleucine and leucine on the biosythesis of biotechspiramycin[J].Chinese Journal of Antibiotics(中国抗生素),2007,32(11):660-668.
    [14]Hafner E,Holley B,Holdom K,et al.Branched-chain fatty acid requirement for avermectin production by a mutant of Streptomyces avermitilis lacking branched-chain 2-oxo acid dehydrogenase activity[J].J Antibiot(Tokyo),1991,44(3):349-356.
    [15]Li Xiao(李啸),Chu Ju(储炬),Zhang Siliang(张嗣良),et al.Effects of biotin and amino acids on biosynthesis of lincomycin[J].Chinese Journal of Antibiotics(中国抗生素杂志),2008,33(1):6-13.
    [16]Farid M A,Enshasy H A,Diwany A I,et al.Optimization of the cultivation medium for natamycin production by Streptomyces natalensis[J].Journal of Basic Microbiology,2000,3:157-166
    [17]Dahong Wang,Lanlan Wei,Ying Zhang et al.Physicochemical and microbial responses of Streptomyces natalensis HW-2 to fungal elicitor[J].Applied Microbiology and Biotechnology,2017,101(17):6705-6712
    [18]Aparicio J,Fouces R,Mendes M,et al.A complex multienzyme system encoded by five polyketide synthase genes is involved in the biosynthesis of the 26-membered polyene macrolide pimaricin in Streptomyces natalensis[J].Chemistry and Biology,2000,11:895-905.
    [19]Aparicio J,Barreales E,Payero T,et al.Biotechnological production and application of the antibiotic pimaricin:biosynthesis and its regulation[J].Applied Microbiology and Biotechnology,2016,100:61-78.
    [20]Stirrett K,Denoya C,Westpheling J.Branched-chain amino acid catabolism provides precursors for the TypeⅡpolyketide antibiotic,actinorhodin,via pathways that are nutrient dependent[J].Journal of Industrial Microbiology and Biotechnology,2009,36(1):129-137.
    [21]Qi Z,Zhou Y,Kang Q,et al.Directed accumulation of less toxic pimaricin derivatives by improving the efficiency of a polyketide synthase dehydratase domain[J].Applied Microbiology and Biotechnology,2017,101(6):2427-2436.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700