骨髓基质干细胞与纳米羟基磷灰石的相互作用
详细信息    查看全文 | 推荐本文 |
摘要
背景:纳米级羟基磷灰石作为一种生物活性材料,以其优良的生物学性能受到广泛的关注,其对骨髓基质干细胞增殖、分化、矿化、细胞毒性等作用,是影响其成骨性能的重要因素,也是目前骨组织工程领域研究的一个热点问题。目的:探讨纳米羟基磷灰石对骨髓基质干细胞的作用,为组织工程化骨的深入研究提供指导。方法:由第一作者检索2006-01-01至2018-07-26PubMed、CNKI、维普、万方和谷歌学术数据库相关文献,英文检索词为"hydroxyapatite,nano-hydroxyapatite,biological matrix material,bone marrow stromal stem cells,osteogenic activity,biocompatibility,cytotoxicity,bone defect,bone tissue engineering,tissue engineered bone";中文检索词为"羟基磷灰石、纳米羟基磷灰石、生物基质材料、骨髓基质干细胞、成骨活性、生物相容性、细胞毒性、骨缺损、骨组织工程、组织工程化骨",共选取66篇文献进行综述。结果与结论:大量研究表明,纳米羟基磷灰石及其复合材料与骨髓基质干细胞具有良好的亲和性、黏附性和生物相容性,能诱导骨髓基质干细胞的增殖和分化,是一种较为理想的骨缺损修复材料,可广泛应用于骨缺损的修复和种植体的表面改性,能够促进新骨早期形成,并增强种植体与骨组织之间的结合强度;纳米羟基磷灰石复合材料还被用于研制生物型人工韧带、引导性骨组织再生膜材料和治疗股骨头坏死等。对纳米羟基磷灰石与骨髓基质干细胞相互作用的深入研究,必将推动组织工程化骨的研究进展和临床应用。
        BACKGROUND: As a kind of bioactive material, nano-hydroxyapatite has received extensive attention for its excellent biological performance. Its effect on the proliferation, differentiation, mineralization and cytotoxicity of bone marrow stromal stem cells is an important factor affecting its osteogenesis performance, and it is also a current hot topic in the field of bone tissue engineering. OBJECTIVE: To explore and analyze the effect of nano-hydroxyapatite on bone marrow stromal stem cells and to provide guidance for further study of tissue engineered bone. METHODS: Relevant literature published from January 1, 2006 to July 26, 2018 was retrieved by the first author in PubMed, CNKI, VIP, WanFang and Google Scholar. The keywords were "hydroxyapatite, nano-hydroxyapatite, biological matrix material, bone marrow stromal stem cells, osteogenic activity, biocompatibility, cytotoxicity, bone defect, bone tissue engineering, tissue engineered bone" in English and Chinese, respectively. Sixty-six eligible articles were finally reviewed. RESULTS AND CONCLUSION: A large number of studies have shown that the nano-hydroxyapatite and its composite materials with bone marrow stromal stem cells have good affinity, adhesion and biocompatibility, and can induce the proliferation and differentiation of bone marrow stromal stem cells. Nano-hydroxyapatite is an ideal material for bone defect repair, which can be widely used in bone defect repair and surface modification of implants, thereby promoting early new bone formation and strengthening the binding between implants and bone tissues. Nano-hydroxyapatite composite materials are also used to develop biological artificial ligaments and guided bone tissue regeneration membrane materials as well as to treat femoral head necrosis. Further investigations on the interaction between nano-hydroxyapatite and bone marrow stromal stem cells will certainly promote the research progress and clinical application of tissue-engineered bone.
引文
[1]李强,王建武,党建军,等.三维骨组织工程复合体修复兔股骨头坏死的实验研[J].陕西医药杂志,2017,12(3):275-277.
    [2]Kalita SJ, Bhardwaj A, Bhatt HA. Nanocrystalline calcium phosphate ceramics in biomedical engineering. Materials Science&Engineering C. 2007;27(3):441-449.
    [3]Goldner G, P?tter R.Radiotherapy in lymph node-positive prostate cancer patients-a potential cure? Single institutional experience regarding outcome and side effects.Front Radiat Ther Oncol. 2008;41:68-76.
    [4]刘芳.纳米材料的结构与性质[J].光谱实验室, 2011,28(2):735-738.
    [5]赵玉岭.纳米材料性质及应用[J].煤炭技术,2009,28(8):149-151.
    [6]朱婧.纳米材料在医学影像上的应用[D].苏州:苏州大学:2016.
    [7]Yang YC, Chao KS, Lin CP, et al. Oxaliplatin regulates DNA repair responding to ionizing radiation and enhances radiosensitivity of human cervical cancer cells.Int J Gynecol Cancer. 2009;19(4):782-786.
    [8]Braux J, Velard F, Guillaume C, et al. A new insight into the dissociating effect of strontium on bone resorption and formation.Acta Biomater. 2011;7(6):2593-2603.
    [9]鹿鸣.碳纤维增强纳米羟基磷灰石/聚酰胺66复合材料力学性能和组织相容性研究[D].北京:中国人民解放军总医院,2015.
    [10]陈津.间充质(干)细胞的定义变迁[J/CD].中华细胞与干细胞杂志(电子版),2017,7(4):247-250.
    [11]Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement.Cytotherapy. 2006;8(4):315-317.
    [12]Dulchavsky D, Gao X, Liu YB, et al. Bone marrow-derived stromal cells(BMSCs)interact with fibroblasts in accelerating wound healing.J Invest Surg. 2008;21(5):270-279.
    [13]Kumar S, Chanda D, Ponnazhagan S.Therapeutic potential of genetically modified mesenchymal stem cells.Gene Ther.2008;15(10):711-715.
    [14]Liu Y, Luo D, Wang T.Hierarchical Structures of Bone and Bioinspired Bone Tissue Engineering.Small. 2016;12(34):4611-4632.
    [15]刘飚,李仕群,张宁,等.微量元素对羟基磷灰石晶体结构的影响[J].济南大学学报,2006,20(3):193-194.
    [16]陈德敏.生物陶瓷材料[J].口腔材料器械杂志, 2007,15(2):94-100.
    [17]庞晓峰,曾红娟.纳米羟基磷灰石粉体的生物活性的研究[J].材料工程,2009,4:14-17,22.
    [18]尹美林,赵善科,郑岩,等.羟基磷灰石纳米晶体的制备?表征及补钙效能研究[J].化学试剂,2018,40(3),212-216.
    [19]徐俊昌,吴涛,吴桂华,等.人骨髓基质干细胞体外培养和生物学特性鉴定[J].中国现代医学杂志,2009,19(7):999-1002.
    [20]Liu Y, Wang G, Cai Y, et al. In vitro effects of nanophase hydroxyapatite particles on proliferation and osteogenic differentiation of bone marrow-derived mesenchymal stem cells.J Biomed Mater Res A. 2009;90(4):1083-1091.
    [21]Tomoaia G, Pop LB, Petean I, et al. Significance of Surface Structure on Orthopedic Materials. Materiale Plastice. 2012;49(1):48-54.
    [22]Remya NS, Syama S, Gayathri V, et al. An in vitro study on the interaction of hydroxyapatite nanoparticles and bone marrow mesenchymal stem cells for assessing the toxicological behaviour.Colloids Surf B Biointerfaces. 2014;117:389-397.
    [23]Zhu W, Guo D, Chen Y, et al. Cytocompatibility of PLA/Nano-HA composites for interface fixation.Artif Cells Nanomed Biotechnol. 2016;44(4):1122-1126.
    [24]He S, Lin KF, Sun Z, et al. Effects of Nano-hydroxyapatite/Poly(DL-lactic-co-glycolic acid)Microsphere-Based Composite Scaffolds on Repair of Bone Defects:Evaluating the Role of Nano-hydroxyapatite Content.Artif Organs. 2016;40(7):E128-135.
    [25]谭羽莹,张舵,李玉新,等.改性纳米羟基磷灰石/PLGA同骨髓基质干细胞复合后相关生物学评价[J].中国组织工程研究与临床康复,2011,15(25):4619-4622.
    [26]Abdel-Gawad EI, Awwad SA. Biocompatibility of intravenous nano hydroxyapatite in male rats. Gawad. 2010;8(9):60-68.
    [27]周琰春,蔡玉荣,刘丽,等.球形羟基磷灰石纳米颗粒的可控合成及其对间充质干细胞生长分化的影响[J].无机化学学报, 2007,23(8):1335-1340.
    [28]智伟,匙峰,李金雨,等.羟基磷灰石球形颗粒表面微型貌构建及其对干细胞生物学行为的调控[J].无机材料学学报, 2017,32(3):319-325.
    [29]杨华伟,陈凯,尚光伟,等.粗糙钛表面纳米掺锶羟基磷灰石涂层对BMSCs成骨分化的影响[J].同济大学学报,2015,36(1):13-17.
    [30]郭凌云,张劲娥,袁建兵,等.快速原型技术制备Nano-HA/PCL支架与犬骨髓基质干细胞体外复合研究[J].口腔颌面外杂志, 2015,25(1):34-38.
    [31]Fu DL, Jiang QH, He FM, et al. Adhesion of bone marrow mesenchymal stem cells on porous titanium surfaces with strontium-doped hydroxyapatite coating. J Zhejiang Univ Sci B. 2017;18(9):778-788.
    [32]乔瑞红,王东,孙海钰,等.骨髓基质干细胞与负载去细胞基质的壳聚糖/纳米羟基磷灰石复合微球联合培养的生物相容性研究[J].中华创伤骨科杂志,2014,16(8):710-714.
    [33]史月华,骨志远,郑园娜,等.掺镁羟基磷灰石涂层对种植体骨结合的影响[J].口腔医学,2014,34(4):249-252.
    [34]付昆,孟志斌,邵增务,等.人骨髓基质干细胞与表面置换珊瑚羟基磷灰石培养的定向诱导分化[J].颈腰痛杂志, 2008,29(6):519-522.
    [35]薛震,牛丽媛,安刚,等.纳米羟基磷灰石/壳聚糖/半水硫酸钙为可注射骨组织工程支架材料的可行性[J].中国组织工程研究, 2015,19(8):1169-1164.
    [36]李家峰,徐金霞,管海虹,等.纳米羟基磷灰石/聚已内酯复合大鼠骨髓间充质干细胞的生物相容性[J].中国组织工程研究, 2012,16(38):7042-7046.
    [37]宋华,任向前,未东兴.纳米羟基磷灰石对缺损骨再生的影响[J].中国组织工程研究,2015,19(8):1155-1159.
    [38]李昂,王晓宇,李泽成,等.人骨髓基质干细胞与支架材料纳米羟基磷灰石/聚酰胺66的生物相容性研究[J].中华创伤骨科杂志,2016,18(3):241-246.
    [39]王立新,袁峰,万怡灶,等.纳米羟基磷灰石/细菌纤维素复合组织工程支架的细胞毒性和生物相容性[J].中国组织工程研究, 2014,18(47):7615-7620.
    [40]李善昌,孔祥盼,李德超.纳米羟基磷灰石修复种植体周围骨缺损的实验研究[J].口腔医学研究,2008,24(5):537-539.
    [41]王晓敏,李海坤,李旭东,等.胶原-羟基磷灰石复合骨组织引导再生性膜的细胞相容性实验研究[J].世界科技研究与发展, 2011,33(6):1060-1062.
    [42]刘彪,李运峰,胡静.含锶羟基磷灰石对骨质疏松症大鼠的影响[J].中国骨质疏松杂志,2015,21(5):524-530.
    [43]徐学武,郭铁芳,韩雪峰,等.预制作生物工程性肌骨瓣的实验研究[J].哈尔滨医科大学学报,2007,41(4):327-332.
    [44]徐勇,安良,曾丹林,等.羟基磷灰石纳米带作为蛋白药物载体的研究[J].功能材料,2018,49(3):03124-03129,03135.
    [45]韩丽丽,张慧慧,马惠芳,等.纳米羟基磷灰石对暖巢癌细胞株的抑制作用研究[J].新医学,2017,48(11):775-778.
    [46]Gupta SK, Kumar R, Mishra NC.Influence of quercetin and nanohydroxyapatite modifications of decellularized goat-lung scaffold for bone regeneration.Mater Sci Eng C Mater Biol Appl. 2017;71:919-928.
    [47]唐月军.纳米增韧(HA-ZrO2系)生物复合多孔陶瓷的制备及其颌骨缺损修复实验研究[D].上海:第二军医大学,2006.
    [48]Lai GJ, Shalumon KT, Chen JP.Response of human mesenchymal stem cells to intrafibrillar nanohydroxyapatite content and extrafibrillar nanohydroxyapatite in biomimetic chitosan/silk fibroin/nanohydroxyapatite nanofibrous membrane scaffolds.Int J Nanomedicine. 2015;10:567-584.
    [49]Luo Y, Lode A, Wu C, et al. Alginate/nanohydroxyapatite scaffolds with designed core/shell structures fabricated by 3D plotting and in situ mineralization for bone tissue engineering.ACS Appl Mater Interfaces. 2015;7(12):6541-6549.
    [50]Zhu W, Guo D, Chen Y, et al. Cytocompatibility of PLA/Nano-HA composites for interface fixation.Artif Cells Nanomed Biotechnol. 2016;44(4):1122-1126.
    [51]Yang W, Both SK, Zuo Y, et al. Biological evaluation of porous aliphatic polyurethane/hydroxyapatite composite scaffolds for bone tissue engineering.J Biomed Mater Res A. 2015;103(7):2251-2259.
    [52]Reddy S, Wasnik S, Guha A, et al. Evaluation of nano-biphasic calcium phosphate ceramics for bone tissue engineering applications:in vitro and preliminary in vivo studies.J Biomater Appl. 2013;27(5):565-575.
    [53]Yang HW, Lin MH, Xu YZ, et al. Osteogenesis of bone marrow mesenchymal stem cells on strontium-substituted nano-hydroxyapatite coated roughened titanium surfaces.Int J Clin Exp Med. 2015;8(1):257-264.
    [54]Johnson I, Wang SM, Silken C, et al. A systemic study on key parameters affecting nanocomposite coatings on magnesium substrates.Acta Biomater. 2016;36:332-349.
    [55]Minardi S, Corradetti B, Taraballi F, et al. Evaluation of the osteoinductive potential of a bio-inspired scaffold mimicking the osteogenic niche for bone augmentation.Biomaterials.2015;62:128-137.
    [56]Morelli S, Salerno S, Holopainen J, et al. Osteogenic and osteoclastogenic differentiation of co-cultured cells in polylactic acid-nanohydroxyapatite fiber scaffolds.J Biotechnol. 2015;204:53-62.
    [57]Garai S, Sinha A.Biomimetic nanocomposites of carboxymethyl cellulose-hydroxyapatite:novel three dimensional load bearing bone grafts.Colloids Surf B Biointerfaces. 2014;115:182-190.
    [58]Shalumon KT, Lai GJ, Chen CH, et al. Modulation of Bone-Specific Tissue Regeneration by Incorporating Bone Morphogenetic Protein and Controlling the Shell Thickness of Silk Fibroin/Chitosan/Nanohydroxyapatite Core-Shell Nanofibrous Membranes.ACS Appl Mater Interfaces. 2015;7(38):21170-21181.
    [59]Zhou C, Deng C, Chen X, et al. Mechanical and biological properties of the micro-/nano-grain functionally graded hydroxyapatite bioceramics for bone tissue engineering.J Mech Behav Biomed Mater. 2015;48:1-11.
    [60]Qian X, Yuan F, Zhimin Z, et al. Dynamic perfusion bioreactor system for 3D culture of rat bone marrow mesenchymal stem cells on nanohydroxyapatite/polyamide 66 scaffold in vitro.J Biomed Mater Res B Appl Biomater. 2013;101(6):893-901.
    [61]Qin J, Zhong Z, Ma J.Biomimetic synthesis of hybrid hydroxyapatite nanoparticles using nanogel template for controlled release of bovine serum albumin.Mater Sci Eng C Mater Biol Appl. 2016;62:377-383.
    [62]Zhang M, Wang D, Yin R. Histocompatibility of nano-hydroxyapatite/poly-co-glycolic acid tissue engineering bone modified by mesenchymal stem cells with vascular endothelial frowth factor. Zhonghua Yi Xue Za Zhi. 2015;95(37):3061-3065.
    [63]Bodakhe S, Verma S, Garkhal K, et al. Injectable photocrosslinkable nanocomposite based on poly(glycerol sebacate)fumarate and hydroxyapatite:development,biocompatibility and bone regeneration in a rat calvarial bone defect model. Nanomedicine(Lond). 2013;8(11):1777-1795.
    [64]李毅,陈槐卿,成敏,等.不同基因转染对骨髓基质干细胞成骨活性的影响[J].生物医学工程杂志,2016,23(1):153-158.
    [65]周航宇,夏德林,甘生远,等.骨形态蛋白2和血管内皮生长因子165双基因转染骨髓基质干细胞的异位诱导成骨能力[J].中国组织工程研究,2017,21(9):1334-1339.
    [66]史素琴,潘研,岳新,等.Egr-1通过上调NDRG1诱导骨髓间充质干细胞成骨分化[J].重庆医学,2017,46(4):442-445.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700