Preparation and CO_2 adsorption properties of porous carbon by hydrothermal carbonization of tree leaves
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and CO_2 adsorption properties of porous carbon by hydrothermal carbonization of tree leaves
  • 作者:Guangzhi ; Yang ; Shen ; Song ; Jing ; Li ; Zhihong ; Tang ; Jinyu ; Ye ; Junhe ; Yang
  • 英文作者:Guangzhi Yang;Shen Song;Jing Li;Zhihong Tang;Jinyu Ye;Junhe Yang;School of Materials Science and Engineering, University of Shanghai for Science and Technology;Shanghai Innovation Institute for Materials;
  • 英文关键词:Porous carbon;;Hydrothermal carbonization;;KOH activation;;CO_2 adsorption
  • 中文刊名:CLKJ
  • 英文刊名:材料科学技术(英文版)
  • 机构:School of Materials Science and Engineering, University of Shanghai for Science and Technology;Shanghai Innovation Institute for Materials;
  • 出版日期:2019-05-15
  • 出版单位:Journal of Materials Science & Technology
  • 年:2019
  • 期:v.35
  • 基金:financially supported by the National Natural Science Foundation of China (Nos. U1760119, 51472160 and U1560108);; the Shanghai Nature Science Foundation (No. 16ZR1423400);; the Science and Technology Commission of Shanghai Municipality (Nos. 15JC1490700 and 16JC1402200)
  • 语种:英文;
  • 页:CLKJ201905021
  • 页数:10
  • CN:05
  • ISSN:21-1315/TG
  • 分类号:175-184
摘要
Porous carbon materials were prepared by hydrothermal carbonization(HTC) and KOH activation of camphor leaves and camellia leaves. The morphology, pore structure, chemical properties and CO_2 capture ability of the porous carbon prepared from the two leaves were compared. The effect of HTC temperature on the structure and CO_2 adsorption properties was especially investigated. It was found that HTC temperature had a major effect on the structure of the product and the ability to capture CO_2. The porous carbon materials prepared from camellia leaves at the HTC temperature of 240℃ had the highest proportion of microporous structure, the largest specific surface area(up to 1823.77 m~2/g) and the maximum CO_2 adsorption capacity of 8.30 mmol/g at 25℃ under 0.4 MPa. For all prepared porous carbons, simulation results of isothermal adsorption model showed that Langmuir isotherm model described the adsorption equilibrium data better than Freundlich isotherm model. For porous carbons prepared from camphor leaves, pseudo-first order kinetic model was well fitted with the experimental data. However,for porous carbons prepared from camellia leaves, both pseudo-first and pseudo-second order kinetics model adsorption behaviors were present. The porous carbon materials prepared from tree leaves provided a feasible option for CO_2 capture with low cost, environmental friendship and high capture capability.
        Porous carbon materials were prepared by hydrothermal carbonization(HTC) and KOH activation of camphor leaves and camellia leaves. The morphology, pore structure, chemical properties and CO_2 capture ability of the porous carbon prepared from the two leaves were compared. The effect of HTC temperature on the structure and CO_2 adsorption properties was especially investigated. It was found that HTC temperature had a major effect on the structure of the product and the ability to capture CO_2. The porous carbon materials prepared from camellia leaves at the HTC temperature of 240℃ had the highest proportion of microporous structure, the largest specific surface area(up to 1823.77 m~2/g) and the maximum CO_2 adsorption capacity of 8.30 mmol/g at 25℃ under 0.4 MPa. For all prepared porous carbons, simulation results of isothermal adsorption model showed that Langmuir isotherm model described the adsorption equilibrium data better than Freundlich isotherm model. For porous carbons prepared from camphor leaves, pseudo-first order kinetic model was well fitted with the experimental data. However,for porous carbons prepared from camellia leaves, both pseudo-first and pseudo-second order kinetics model adsorption behaviors were present. The porous carbon materials prepared from tree leaves provided a feasible option for CO_2 capture with low cost, environmental friendship and high capture capability.
引文
[1]A.A.Lacis,G.A.Schmidt,D.Rind,R.A.Ruedy,Science 330(2010)356-359.
    [2]X.Luo,Y.Guo,F.Ding,H.Zhao,G.Cui,H.Li,C.Wang,Angew.Chem.Int.Ed.53(2014)7053-7057.
    [3]X.Gao,X.Zou,H.Ma,S.Meng,G.Zhu,Adv.Mater.26(2014)3644-3648.
    [4]T.D.Pham,M.R.Hudson,C.M.Brown,R.F.Lobo,ChemSusChem 7(2015)3031-3038.
    [5]M.A.Alkhabbaz,P.Bollini,G.S.Foo,C.Sievers,C.W.Jones,J.Am.Chem.Soc.136(2014)13170-13173.
    [6]R.L.Siegelman,T.M.Mcdonald,M.I.Gonzalez,J.D.Martell,P.J.Milner,J.A.Mason,A.H.Berger,A.S.Bhown,J.R.Long,J.Am.Chem.Soc.139(2017)10526-10538.
    [7]J.W.Yoon,T.U.Yoon,E.J.Kim,A.R.Kim,T.S.Jung,S.S.Han,Y.S.Bae,J.Hazard.Mater.341(2017)321-327.
    [8]W.Hao,E.Bj?rkman,M.Lilliestr?le,N.Hedin,Appl.Energy 112(2013)526-532.
    [9]X.Huang,X.Zhan,C.Wen,F.Xu,L.Luo,J.Mater.Sci.Technol.34(2018)855-863.
    [10]K.Wei,K.O.Kim,K.H.Song,C.Y.Kang,J.S.Lee,M.Gopiraman,I.S.Kim,J.Mater.Sci.Technol.33(2017)424-431.
    [11]M.Shoaib,H.M.Al-Swaidan,Asian J.Chem.26(2014)5295-5297.
    [12]Y.Q.Shi,J.Zhu,X.Q.Liu,J.C.Geng,L.B.Sun,ACS Appl.Mater.Interfaces 6(2014)20340-20349.
    [13]B.Ledesma,M.Olivares-Marín,A.álvarez-Murillo,S.Roman,J.M.V.Nabais,J.Supercrit.Fluids 138(2018)187-192.
    [14]M.T.Reza,S.R.Poulson,S.Román,C.J.Coronella,J.Anal.Appl.Pyrolysis 131(2018)85-92.
    [15]K.Li,S.Liu,T.Shu,L.Yan,H.Guo,Y.Dai,X.Luo,S.Luo,Mater.Chem.Phys.181(2016)518-528.
    [16]M.A.Islam,M.J.Ahmed,W.A.Khanday,M.Asif,B.H.Hameed,Ecotoxicol.Environ.Saf.138(2017)279-285.
    [17]C.Laginhas,J.M.V.Nabais,M.M.Titirici,Microporous Mesoporous Mater.226(2016)125-132.
    [18]H.Mao,D.Zhou,Z.Hashisho,S.Wang,H.Chen,H.Wang,M.J.Lashaki,RSCAdv.5(2015)36051-36058.
    [19]K.Malwade,D.Lataye,V.Mhaisalkar,S.Kurwadkar,D.Ramirez,Int.J.Environ.Sci.Technol.13(2016)2107-2116.
    [20]M.A.Islam,I.A.W.Tan,A.Benhouria,M.Asif,B.H.Hameed,Chem.Eng.J.270(2015)187-195.
    [21]Y.Li,Y.Li,L.Li,X.Shi,Z.Wang,Adv.Powder Technol.27(2016)684-691.
    [22]Suhas,V.K.Gupta,P.J.M.Carrott,R.Singh,M.Chaudhary,S.Kushwaha,Bioresour.Technol.216(2016)1066-1076.
    [23]A.N.A.Elhendawy,A.J.Alexander,R.J.Andrews,G.Forrest,J.Anal.Appl.Pyrolysis 82(2008)272-278.
    [24]B.Hu,S.H.Yu,K.Wang,L.Liu,X.W.Xu,Dalton Trans.40(2008)5414-5423.
    [25]Y.S.Ho,G.Mckay,Process Biochem.34(1999)451-465.
    [26]M.M.Titirici,R.J.White,C.Falco,M.Sevilla,Energy Environ.Sci.5(2012)6796-6822.
    [27]M.Sevilla,A.B.Fuertes,R.Mokaya,Energy Environ.Sci.4(2011)1400-1410.
    [28]Y.Gao,H.P.Chen,J.Wang,T.Shi,H.P.Yang,X.H.Wang,J.Fuel Chem.Technol.39(2011)893-900.
    [29]Y.Wang,H.H.Wang,F.Zhu,J.Zhan,Sci.Silvae Sin.48(2012)98-106.
    [30]E.Mészáros,E.Jakab,G.Várhegyi,P.Tóvári,J.Therm.Anal.Calorim.88(2007)477-482.
    [31]J.Wang,S.Kaskel,J.Mater.Chem.22(2012)23710-23725.
    [32]I.A.W.Tan,A.L.Ahmad,B.H.Hameed,J.Hazard.Mater.153(2008)709-717.
    [33]S.H.Jung,S.Kim,A.Y.Chung,H.T.Kim,J.H.So,J.Ryu,H.C.Park,C.H.Kim,Appl.Clay Sci.95(2014)60-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700