聚多巴胺仿生法制备羟基磷灰石涂层及对骨髓间质干细胞生物学特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dopamine-induced biomimetic hydroxyapatite coating: preparation and biological effect on bone marrow mesenchym stem cells
  • 作者:徐炎安 ; 阳淇名 ; 李鸿 ; 蒋电明 ; 谯波
  • 英文作者:Xu Yanan;Yang Qiming;Li Hong;Jiang Dianming;Qiao Bo;Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University;College of Physical Science and Technology, Sichuan University;Department of Orthopedics, the Third Affiliated Hospital of Chongqing Medical University;
  • 关键词:羟基磷灰石类 ; 尼龙 ; 细胞生物学 ; 组织工程 ; 纳米羟基磷灰石/聚酰胺66 ; 骨髓间质干细胞 ; 生物相容性 ; 生物活性 ; 成骨分化 ; 干细胞
  • 英文关键词:,Hydroxyapatites;;Nylons;;Cell Biology;;Tissue Engineering
  • 中文刊名:XDKF
  • 英文刊名:Chinese Journal of Tissue Engineering Research
  • 机构:重庆医科大学附属第一医院骨科;四川大学物理科学技术学院;重庆医科大学附属第三医院骨科;
  • 出版日期:2018-12-03
  • 出版单位:中国组织工程研究
  • 年:2019
  • 期:v.23;No.858
  • 基金:国家青年自然科学基金(81501876),项目负责人:谯波;; 重庆市教委科学与技术项目(KJ1702031),项目负责人:谯波;重庆市教委成果转换项目(KJZH17110),项目负责人:蒋电明~~
  • 语种:中文;
  • 页:XDKF201901011
  • 页数:8
  • CN:01
  • ISSN:21-1581/R
  • 分类号:53-60
摘要
背景:聚多巴胺仿生法被证实可在多种不同金属表面制备羟基磷灰石涂层,但目前缺乏利用其在人工合成材料表面制备羟基磷灰石涂层的研究。目的:利用聚多巴胺仿生法在纳米羟基磷灰石/聚酰胺66表面制备羟基磷灰石涂层,评价其对骨髓间质干细胞生物学的影响。方法:采用聚多巴胺仿生法在纳米羟基磷灰石/聚酰胺66表面制备羟基磷灰石涂层,获得羟基磷灰石-聚多巴胺-纳米羟基磷灰石/聚酰胺66(hydroxyapatite-polydopamine-nano-hydroxyapatite/polyamide66,HA-PDA-HA/P66)材料,通过X射线光电子能谱分析和扫描电镜检测羟基磷灰石涂层,并检测材料的表面粗糙度及亲水性。将骨髓间质干细胞C3H10T1/2分别与纳米羟基磷灰石/聚酰胺66、聚多巴胺-纳米羟基磷灰石/聚酰胺66、HA-PDA-HA/P66材料共培养,培养6,12h后,采用CCK-8法检测细胞黏附情况;培养1d,通过扫描电镜观察细胞形态;培养1,3 d,DAPI染色检测细胞增殖;成骨诱导培养7,10 d,检测细胞碱性磷酸酶活性;成骨诱导培养14 d,茜素红染色检测细胞矿化能力。结果与结论:(1)X射线衍射和扫描电镜证实成功制备了羟基磷灰石涂层,且羟基磷灰石涂层明显提高了材料亲水性和表面粗糙度;(2)培养6,12 h,HA-PDA-HA/P66材料表面黏附的细胞数明显多于其余两种材料(P <0.05);培养1 d,在HA-PDA-HA/P66及聚多巴胺-纳米羟基磷灰石/聚酰胺66材料上的细胞呈多边形,且有较多伪足;培养1,3 d,HA-PDA-HA/P66材料表面的细胞增殖能力高于其余两种材料(P <0.05);(4)成骨诱导7,10 d,HA-PDA-HA/P66材料表面细胞内碱性磷酸酶活性高于其余两种材料(P <0.05);成骨诱导14 d,HA-PDA-HA/P66材料周围钙结节形成多于其余两种材料;(5)结果表明,利用聚多巴胺仿生法可在纳米羟基磷灰石/聚酰胺66表面制备羟基磷灰石涂层,且涂层具有良好的生物活性与生物相容性。
        BACKGROUND: Hydroxyapatite(HA) coating can be formed on different kinds of metals assisted by polydopamine(PDA). However, the preparation of HA coating with biomimetic method assisted by PDA on artificial synthetic materials is rarely reported. OBJECTIVE: To prepare the HA coating on HA/P66 surface assisted by PDA and to evaluate its effect on bone marrow mesenchymal stem cells. METHODS: First HA coating was prepared on the HA/P66 surface using the biomimetic method assisted by PDA to obtain HA-PDA-HA/P66 substrate and then verified by X-ray photoelectron spectroscopy and scanning electron microscopy. Its surface properties such as hydrophilicity and surface roughness were also characterized. Then C3 H10 T1/2 cells were co-cultured with HA/P66, PDA-HA/P66 and HA-PDA-HA/P66. After 6 and 12 hours of cultivation, the initial cell adhesion was observed by cell counting kit-8. After 1 day of cultivation, cell morphology was observed by scanning electron microscope. After 1 and 3 days of cultivation, cell proliferation was assessed by 4,6-diamino-2-phenyl indole staining. After osteogenic induction for 7 and 10 days, intracellular alkaline phosphatase activity was detected. After osteogenic induction for 14 days, mineralization of the extracellular matrix was detected by alizarin red staining. RESULTS AND CONCLUSION:(1) HA coating was successfully prepared on the HA/P66 substrate which was verified by X-ray photoelectron spectroscopy and scanning electron microscope. HA coating greatly increased the hydrophilicity and surface roughness of HA/P66.(2) After 6 and 12 hours of cultivation, the number of adherent cells on the surface of HA-PDA-HA/P66 was significantly higher than that in the other groups(P < 0.05). After 1 day of cultivation, the cells on the surface of HA-PDA-HA/P66 and PDA-HA/P66 showed polygonal shape with a large number of pseudopodia.(3) After 1 and 3 days of cultivation, the cell proliferation on the surface of HA-PDA-HA/P66 was significantly higher than that in the other two groups(P < 0.05).(4) After 7 and 10 days of osteogenic induction, the alkaline phosphatase activity of cells on the surface of HA-PDA-HA/P66 was significantly higher than that of the other groups. After 14 days of osteogenic induction, there were more calcium nodules on the surface of HA-PDA-HA/P66 than in the other groups. These findings indicate that HA coating can be successfully prepared on the surface of HA/P66 through the biomimetic process assisted by PDA and has good biocompatibility and bioactivity.
引文
[1]Manam NS, Harun W, Shri D, et al. Study of corrosion in biocompatible metals for implants:A review. J Alloys Compd.2017;701:698-715.
    [2]Hajiali F, Tajbakhsh S, Shojaei A. Fabrication and properties of polycaprolactone composites containing calcium phosphate-based ceramics and bioactive glasses in bone tissue engineering:a review. Polym Rev. 2018;58(1):164-207.
    [3]Yilmaz B, Alp G, Seidt J, et al. Fracture analysis of CAD-CAM high-density polymers used for interim implant-supported fixed, cantilevered prostheses. J Prosthet Dent. 2018. pii:S0022-3913(17)30694-7. doi:10.1016/j. prosdent.2017.09.017.[Epub ahead of print]
    [4]Hwang I, Choe H. Hydroxyapatite coatings containing Zn and Si on Ti-6Al-4Valloy by plasma electrolytic oxidation. Appl Surf Sci. 2018;432:337-346.
    [5]Gao C, Li C, Wang Z, et al. Advances in the induction of osteogenesis by zinc surface modification based on titanium alloy substrates for medical implants. J Alloys Compd. 2017;726:1072-1084.
    [6]Chatzinikolaidou M, Pontikoglou C, Terzaki K, et al.Recombinant human bone morphogenetic protein 2(rhBMP-2)immobilized on laser-fabricated 3D scaffolds enhance osteogenesis. Colloids Surf B Biointerfaces. 2017;149:233-242.
    [7]Xia L, Xie Y, Fang B, et al. In situ modulation of crystallinity and nano-structures to enhance the stability and osseointegration of hydroxyapatite coatings on Ti-6Al-4V implants. Chem Eng J. 2018;347:711-720.
    [8]Sanda M, Fujimori T, Shiota M, et al. Ten Years Follow-Up of Sputtered Hydroxyapatite Coated Implant in Single or Two Missing Teeth Replacement. POJ Dent Oral Care. 2017;1(1):1-5.
    [9]Jung J, Kim S, Yi Y, et al. Hydroxyapatite-coated implant:Clinical prognosis assessment via a retrospective follow-up study for the average of 3 years. J Adv Prosthodont. 2018;10(2):85-92.
    [10]Deng Y, Yang Y, Ma Y, et al. Nano-hydroxyapatite reinforced polyphenylene sulfide biocomposite with superior cytocompatibility and in vivo osteogenesis as a novel orthopedic implant. RSC Adv. 2017;7(1):559-573.
    [11]秦杰,赵波,王栋,等.羟基磷灰石涂层改善骨内植物界面促进骨整合[J].中国组织工程研究,2016,20(38):5642-5649.
    [12]Aruna ST, Kulkarni S, Chakraborty M, et al. A comparative study on the synthesis and properties of suspension and solution precursor plasma sprayed hydroxyapatite coatings.Ceramic Int. 2017;13(43):9715-9722.
    [13]Sidane D, Rammal H, Beljebbar A, et al. Biocompatibility of sol-gel hydroxyapatite-titania composite and bilayer coatings.Mater Sci Eng C. 2017;72:650-658.
    [14]Hasan AF, Elttayef AH, Khalaf MK. The Effect of Different Thermal Treatments on Corrosion Behavior of the Hydroxyapatite Coated on Ti-6Al-4V Alloy by Electrophoretic Deposition and Dip Coating. Ibn AL-Haitham Jr Pure Appl Sci.2017;30(1):355-365.
    [15]Hu C, Aindow M, Wei M. Focused ion beam sectioning studies of biomimetic hydroxyapatite coatings on Ti-6Al-4V substrates. Surf Coat Technol. 2017;313:255-262.
    [16]Türk S, Alt?nsoy I, Efe G?, et al. A comparison of pretreatments on hydroxyapatite formation on Ti by biomimetic method. J Aust Ceram Soc. 2018:1-11.
    [17]Shin K, Acri T, Geary S, et al. Biomimetic Mineralization of Biomaterials Using Simulated Body Fluids for Bone Tissue Engineering and Regenerative Medicine. Tissue Eng Part A.2017;23(19-20):1169-1180.
    [18]Lee H, Dellatore SM, Miller WM, et al. Mussel-inspired surface chemistry for multifunctional coatings. Science.2007;318(5849):426-430.
    [19]Wang Z, Dong C, Yang S, et al. Facile incorporation of hydroxyapatite onto an anodized Ti surface via a mussel inspired polydopamine coating. Appl Surf Sci. 2016;378:496-503.
    [20]Cai Y, Wang X, Poh CK, et al. Accelerated bone growth in vitro by the conjugation of BMP2 peptide with hydroxyapatite on titanium alloy. Colloids Surf B Biointerfaces. 2014;116:681-686.
    [21]Wu Y, Liu X, Li Y, et al. Surface-adhesive layer-by-layer assembled hydroxyapatite for bioinspired functionalization of titanium surfaces. Rsc Adv. 2014;4(84):44427-44433
    [22]Saidin S, Chevallier P, Abdul Kadir MR, et al. Polydopamine as an intermediate layer for silver and hydroxyapatite immobilisation on metallic biomaterials surface. Mater Sci Eng C. 2013;33(8):4715-4724.
    [23]Ryu J, Ku SH, Lee H, et al. Mussel-Inspired Polydopamine Coating as a Universal Route to Hydroxyapatite Crystallization. Adv Funct Mater. 2010;20(13):2132-2139.
    [24]Gupta S, Dahiya V, Shukla P. Surface topography of dental implants:A review. J Dent Implants. 2014;4(1):66-71.
    [25]Thomsen P, Malmstr?m J, Emanuelsson L, et al. Electron beam‐melted, free‐form‐fabricated titanium alloy implants:Material surface characterization and early bone response in rabbits. J Biomed Mater Res B Appl Biomater. 2009;90(1):35-44.
    [26]Karazisis D, Petronis S, Agheli H, et al. The influence of controlled surface nanotopography on the early biological events of osseointegration. Acta Biomaterialia. 2017;53:559-571.
    [27]Liu M, Zeng G, Wang K, et al. Recent developments in polydopamine:an emerging soft matter for surface modification and biomedical applications. Nanoscale.2016;8(38):16819-16840.
    [28]Zhang H, BréLP, Zhao T, et al. Mussel-inspired hyperbranched poly(amino ester)polymer as strong wet tissue adhesive. Biomaterials. 2014;35(2):711-719.
    [29]Huang S, Liang N, Hu Y, et al. Polydopamine-Assisted Surface Modification for Bone Biosubstitutes. Biomed ResInt.2016;2016:1-9.
    [30]Zhang Z, Zhang J, Zhang B, et al. Mussel-inspired functionalization of graphene for synthesizing Ag-polydopamine-graphene nanosheets as antibacterial materials. Nanoscale. 2013;5(1):118-123.
    [31]Pan H, Zheng Q, Guo X, et al. Polydopamine-assisted BMP-2-derived peptides immobilization on biomimetic copolymer scaffold for enhanced bone induction in vitro and in vivo. Colloids Surf B Biointerfaces. 2016;142:1-9.
    [32]Heng C, Liu M, Wang K, et al. Fabrication of silica nanoparticle based polymer nanocomposites via a combination of mussel inspired chemistry and SET-LRP. RSC Adv. 2015;5(111):91308-91314.
    [33]Madhurakkat Perikamana SK, Lee J, Lee YB, et al. Materials from Mussel-Inspired Chemistry for Cell and Tissue Engineering Applications. Biomacromolecules. 2015;16(9):2541-2555.
    [34]Ho C, Ding S. Structure, Properties and Applications of Mussel-Inspired Polydopamine. J Biomed Nanotechnol.2014;10(10):3063-3084.
    [35]Zhu B, Edmondson S. Polydopamine-melanin initiators for surface-initiated ATRP. Polymer. 2011;52(10):2141-2149.
    [36]Ma T, Ge X, Zhang Y, et al. Effect of Titanium Surface Modifications of Dental Implants on Rapid Osseointegration.Oral Health Science 2016 Innovative Research on Biosis-Abiosis Intelligent Interface, Suzuki K S O, Takahashi N, Springer, 2016:247-256.
    [37]Chien CY, Liu TY, Kuo WH, et al. Dopamine‐assisted immobilization of hydroxyapatite nanoparticles and RGD peptides to improve the osteoconductivity of titanium. J Biomed Mater Res A. 2013;101(3):740-747.
    [38]Madhurakkat Perikamana SK, Lee J, Lee YB, et al. Materials from Mussel-Inspired Chemistry for Cell and Tissue Engineering Applications. Biomacromolecules. 2015;16(9):2541-2555.
    [39]Gy?rgyeyá, Ungvári K, Kecskeméti G, et al. Attachment and proliferation of human osteoblast-like cells(MG-63)on laser-ablated titanium implant material. Mater Sci Eng C.2013;33(7):4251-4259.
    [40]Al QW, Schille C, Spintzyk S, et al. Effect of surface modification of zirconia on cell adhesion, metabolic activity and proliferation of human osteoblasts. Biomed Tech(Berl).2017;62(1):75-87.
    [41]Du Z, Ivanovski S, Hamlet SM, et al. The ultrastructural relationship between osteocytes and dental implants following osseointegration. Clin Implant Dent Relat Res. 2016;18(2):270-280.
    [42]Liu X, Wang Y, Cao Z, et al. Staphylococcal lipoteichoic acid promotes osteogenic differentiation of mouse mesenchymal stem cells by increasing autophagic activity. Biochem Biophys Res Commun. 2017;485(2):421-426.
    [43]Shao X, Lin S, Peng Q, et al. Effect of tetrahedral DNA nanostructures on osteogenic differentiation of mesenchymal stem cells via activation of the Wnt/β-catenin signaling pathway. Nanomedicine. 2017;13(5):1809-1819.
    [44]Kao C, Lin C, Chen Y, et al. Poly(dopamine)coating of 3D printed poly(lactic acid)scaffolds for bone tissue engineering.Mater Sci Eng C. 2015;56:165-173.
    [45]Gittens RA, Mclachlan T, Olivares-Navarrete R, et al. The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials. 2011;32(13):3395-3403.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700