不同纳米氧化铁对小麦幼苗生理特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Physiological and Biochemical Influence of Different Iron Oxide Nanoparticles on Wheat Seedlings
  • 作者:李俊丽 ; 邹正康 ; 刘倩 ; 陆芹洪 ; 杨道勇
  • 英文作者:LI Jun-li;ZOU Zheng-kang;LIU Qian;LU Qin-hong;YANG Dao-yong;Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology;
  • 关键词:纳米氧化铁 ; 小麦 ; 生理影响
  • 英文关键词:Iron oxide nanoparticles;;Wheat;;Physiological effects
  • 中文刊名:XNYX
  • 英文刊名:Southwest China Journal of Agricultural Sciences
  • 机构:武汉理工大学化学化工与生命科学学院生物系;
  • 出版日期:2019-05-28
  • 出版单位:西南农业学报
  • 年:2019
  • 期:v.32
  • 基金:国家自然科学基金项目(31301735);; 中央高校基本科研业务费专项资金资助(2017IB006);; 国家级大学生创新训练项目(20181049715007)
  • 语种:中文;
  • 页:XNYX201905009
  • 页数:7
  • CN:05
  • ISSN:51-1213/S
  • 分类号:64-70
摘要
【目的】为探究不同纳米氧化铁(α-Fe_2O_3、γ-Fe_2O_3、Fe_3O_4)和离子铁(Fe~(2+)、Fe~(3+))对小麦幼苗生长的影响。【方法】以小麦品种新麦18号为试验材料,使用不同纳米氧化铁和离子铁对小麦幼苗进行水培处理后,对小麦幼苗的抗氧化体系、叶绿素、根系活力等进行检测。【结果】与对照相比,纳米氧化铁和离子铁处理下的小麦的Fe含量均显著升高,小麦的叶绿素和花青素未发生显著变化。纳米Fe_3O_4处理下叶中SOD酶、可溶性蛋白和可溶性糖均升高;Fe~(2+)处理下的小麦的根和叶中MDA、叶中SOD酶、叶中POD酶、根中CAT酶活性、叶中可溶性蛋白和根中可溶性糖均显著升高;Fe~(3+)处理下的小麦的根长显著减少,根系活力、根和叶中MDA、根中CAT酶活性、叶中POD酶活性、根和叶中可溶性糖均显著升高。【结论】同浓度处理下,纳米材料展现了比离子更小的生物毒性和更高的生物有效性。为纳米氧化铁作为铁肥在农业上使用这一思路提供了一定的理论依据和数据基础。
        【Objective】The research aimed at studying the physiological and biochemical influence of different iron oxide nanoparticles(α-Fe_2O_3, γ-Fe_2O_3, Fe_3O_4 NPs) and ions(Fe~(2+), Fe~(3+)) on the growth of wheat seedlings. 【Method】With new wheat 18 wheat varieties as experimental material, anti-oxidizing system, chlorophyll content and root activity of wheat seedlings were measured after being treated with different iron oxide NPs under hydroponic culture. 【Result】After being treated with different different iron oxide NPs and equivalent ions, iron content were increased apparently compared with the control, and the content of chlorophyll and anthocyanin remained relatively stable. After being treated with Fe_3O_4 NPs_(,) the content of soluble sugar and soluble protein were increased remarkably in leaves. After being treated with Fe~(2+), the content of MDA in roots and leaves, soluble protein in leaf and soluble sugar in roots, the activity of POD in leaves and CAT in root, were significantly increased. Root length of wheat under Fe~(3+) treatment was significantly decreased, however, root activity, the content of MDA and soluble sugar in roots and leaves, the activity of CAT in root and POD in leaves, were all significantly increased. 【Conclusion】All the results showed that under the same concentration treatment, NPs not only showed less phytotoxicity than equivalent ions, but also had higher bioavailability, which provided certain theoretical basis and data basis for the use of iron oxide nanoparticles as iron fertilizer in agriculture.
引文
[1]吴慧兰,王宁,凌宏清,等.植物铁吸收、转运和调控的分子机制研究进展[J].植物学报,2007,24(6):779-788.
    [2]刘自飞,高丽丽,王盛锋,等.常见铁肥品种及其使用效果综述[J].中国土壤与肥料,2012(6):1-9.
    [3]张进.叶面喷施高效铁肥及田间养分综合管理对水稻籽粒铁富集的调控研究[D].杭州:浙江大学,2007.
    [4]R?mheld V,Marschner H.Evidence for a specific uptake system for iron phytosiderophores in roots of grasses[J].Plant Physiology,1986,80(1):175-180.
    [5]方源.纳米材料及其应用[J].科技与生活,2010,30(17):146-146.
    [6]Das J,Choi Y J,Song H,et al.Potential toxicity of engineered nanoparticles in mammalian germ cells and developing embryos:treatment strategies and anticipated applications of nanoparticles in gene delivery[J].Human Reproduction Update,2016,22(5):588-619.
    [7]Pradeep T,Anshup.Noble metal nanoparticles for water purification:A critical review[J].Thin Solid Films,2009,517(24):6441-6478.
    [8]Pan B,Xing B .Applications and implications of manufactured nanoparticles in soils:a review[J].European Journal of Soil Science,2012,63(4):437-456.
    [9]Qian H,Pretzer L A,Velazquez J C,et al.Gold nanoparticles for cleaning contaminated water[J].Journal of Chemical Technology & Biotechnology,2013,88(5):735-741.
    [10]Feizi H,Moghaddam P R,Shahtahmassebi N,et al.Impact of Bulk and Nanosized Titanium Dioxide (TiO2) on Wheat Seed Germination and Seedling Growth[J].Biological Trace Element Research,2012,146(1):101-106.
    [11]Kumar R,Ashfaq M,Verma N.Synthesis of novel PVA-starch formulation-supported Cu-Zn nanoparticle carrying carbon nanofibers as a nanofertilizer:controlled release of micronutrients[J].Journal of Materials Science,2018,53:1-15.
    [12]Jing H,Guo H,Li J,et al.Comparative impacts of iron oxide nanoparticles and ferric ions on the growth of Citrus maxima[J].Environmental Pollution,2017,221:199-208.
    [13]卢峰.2017年河南小麦市场情况分析及2018年展望[J].现代面粉工业,2018(2):40-43.
    [14]Buege J A,Aust S D.Microsomal lipid peroxidation[J].Methods Enzymol,1977,52(349):302-310.
    [15]Wang Y,Ying Y,Chen J,et al.Transgenic Arabidopsis overexpressing Mn-SOD enhanced salt-tolerance[J].Plant Science,2004,167(4):671-677.
    [16]张亚宏,孙万仓,魏文慧,等.自交对甘蓝型油菜叶片SOD,CAT,APX活性的影响[J].华北农学报,2008,23(1):105-108.
    [17]王伟玲,王展,王晶英.植物过氧化物酶活性测定方法优化[J].实验室研究与探索,2010,29(4):21-23.
    [18]郑坚,陈秋夏,金川,等.不同TTC法测定枫香等阔叶树容器苗根系活力探讨[J].浙江农业科学,2008,1(1):39-42.
    [19]董爱文,陈阳波,向中,等.蒽酮法测定爬山虎果中糖类的含量[J].中国野生植物资源,2003,22(1):47-49.
    [20]王孝平,邢树礼.考马斯亮蓝法测定蛋白含量的研究[J].天津化工,2009,23(3):40-42.
    [21]童丹,杨声,韩黎明,等.定西地产“黑美人”马铃薯中花青素提取工艺研究[J].甘肃高师学报,2015,20(5):50-52.
    [22]王超,张兵涛,王文秀.小麦叶片叶绿素的提取及其稳定性研究[J].湖南农业科学,2012(23):38-41.
    [23]Ma C,Chhikara S,Minocha R,et al.Reduced Silver Nanoparticle Phytotoxicity in Crambe abyssinica with Enhanced Glutathione Production by Overexpressing Bacterial γ-Glutamylcysteine Synthase[J].Environmental Science & Technology,2015,49(16):10117-26.
    [24]杨新萍,赵方杰.植物对纳米颗粒的吸收、转运及毒性效应[J].环境科学,2013,34(11):4495-4502.
    [25]Zhao L,Peraltavidea J R,Rico C M,et al.CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus)[J].J Agric Food Chem,2014,62(13):2752-2759.
    [26]兰丽贞,赵群芬.纳米TiO2在拟南芥中的富集、转运及对其生长和生理的影响[J].环境科学学报,2018(2):837-846.
    [27]Adams J,Wright M,Wagner H,et al.Cu from dissolution of CuO nanoparticles signals changes in root morphology[J].Plant Physiology & Biochemistry,2016(1):108-117.
    [28]马富举,李丹丹,蔡剑,等.干旱胁迫对小麦幼苗根系生长和叶片光合作用的影响[J].应用生态学报,2012,23(3):724-730.
    [29]王运强,甘秋良,戴照义,等.不同浓度纳米氧化铁对西瓜幼苗生长的影响[J].西南农业学报,2017(12):2782-2787.
    [30]陈少瑜,郎南军,贾利强,等.干旱胁迫对坡柳等抗旱树种幼苗膜脂过氧化及保护酶活性的影响[J].植物研究,2006,26(1):88-92.
    [31]赵风斌,王丽卿,季高华,等.盐胁迫对3种沉水植物生物学指标及叶片中丙二醛含量的影响[J].环境污染与防治,2012(10):40-44.
    [32]胡玉龙,李雪华,赵苹艺,等.镉胁迫对甘薯苗生理生化指标的影响[J].湖北农业科学,2015,54(4):858-861.
    [33]赵铭,甘秋良,李俊丽,等.纳米氧化铁对豇豆生长及其抗氧化系统的影响[J].西南农业学报,2017,30(3):547-552.
    [34]Kim B C,Tennessen D J,Last R L.UV-B-induced photomorphogenesis in Arabidopsis thaliana[J].Plant Journal for Cell & Molecular Biology,2010,15(5):667-674.
    [35]王龙飞.UV-B辐射及干旱胁迫对三种胡枝子叶片光合特性及花青素含量的影响[D].西北农林科技大学,2013.
    [36]田敏,饶龙兵,李纪元.植物细胞中的活性氧及其生理作用[J].植物生理学报,2005,41(2):235-241.
    [37]武孔焕,陈奇,李昆志,等.铝胁迫对黑大豆膜脂过氧化及抗氧化酶活性的影响[J].西北植物学报,2012,32(3):511-517.
    [38]Singh N K,Bracker C A,Hasegawa P M,et al.Characterization of osmotin :a thaumatin-like protein associated with osmotic adaptation in plant cells[J].Plant Physiology,1987,85(2):529-536.
    [39]赵军,赵玉田,梁博文.寒胁迫过程中冬小麦叶片组织可溶性蛋白质含量的变化和功能[J].中国农业科学,1994,27(2):57-63.
    [40]Jian-hui,Jing-hui,ZHANG,et al.Effect of Alkali Stress on Soluble Sugar,Antioxidant Enzymes and Yield of Oat[J].Journal of Integrative Agriculture,2013,12(8):1441-1449.
    [41]Kurepa J,Paunesku T,Vogt S,et al.Uptake and distribution of ultra-small anatase TiO2 Alizarin red S nanoconjugates in Arabidopsis thaliana[J].Nano Letters,2010,10(7):2296-302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700