基于CSRR特性的微波测量方法研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress of Microwave Measurements Based on CSRR Characteristics
  • 作者:孙景芳 ; 李永倩 ; 胡佩
  • 英文作者:SUN Jingfang;LI Yongqian;HU Peipei;School of Electrical and Electronic Engineering,North China Electric Power University;
  • 关键词:互补开口环谐振器 ; 微波测量 ; 微扰原理
  • 英文关键词:complementary split-ring resonator;;microwave measurement;;perturbation principle
  • 中文刊名:XDLD
  • 英文刊名:Modern Radar
  • 机构:华北电力大学电气与电子工程学院;
  • 出版日期:2019-01-15
  • 出版单位:现代雷达
  • 年:2019
  • 期:v.41;No.338
  • 基金:国家自然科学基金资助项目(61775057);; 中央高校基本科研业务费资助项目(2014MS103)
  • 语种:中文;
  • 页:XDLD201901015
  • 页数:5
  • CN:01
  • ISSN:32-1353/TN
  • 分类号:74-78
摘要
阐述了关于互补开口环谐振器结构的基本原理;总结分析了基于互补开口环谐振器的微波测量方法,利用微扰原理,通过电磁场的微小扰动实现高精度测量。分析得出,加载互补开口环谐振器的微波传感器具有较小的尺寸,且具有测量精度高、在线监测、对样品无破坏等优点,是未来微波测量技术发展的一个重要方向。
        The basic principle of complementary split-ring resonator is described. The micro-wave measuring methods based on the complementary ring-opening resonator is analyzed and summarized. Using the principle of perturbation,the high-accuracy measurement is realized by the tiny disturbance of the electromagnetic field. The analysis shows that the microwave sensor with complementary split-ring resonator has a smaller size,has the advantages of high measurement accuracy,on-line monitoring,nondestructive to the sample and the like. It is an important direction for the development of microwave measurement technology in the future.
引文
[1] AKHTAR M J,FEHER L E,THUMM M. A waveguidebased two-step approach for measuring complex permittivity tensor of uniaxial composite materials[J]. IEEE Transactions on Microwave Theory and Techniques,2006,54(5):2011-2022.
    [2] ANSARI M A H,JHA A K,AKHTAR M J. Permittivity measurement of common solvents using the CSRR based sensor[C]//IEEE International Symposium on Antennas and Propagation&Usnc/ursi National Radio Science Meeting,2015:1199-1200.
    [3] LI C H,CHEN K W,HSU C M,et al. Non-contact detecting solution ionic strength in microfluidic channel utilizing GHz complementary split-ring resonator(CSRR)[C]//International Conference on Solid-State Sensors,Actuators and Microsystems,2017:1915-1918.
    [4] SAWSAN S,MOHAMMED E. Near-field microwave microscopy for the characterization of dielectric materials[J]. International Journal of Microwave&Wireless Technologies,2014,6(6):549-554.
    [5] YANG C L,LEE C S,CHEN K W,et al. Noncontact measurement of complex permittivity and thickness by using planar resonators[J]. IEEE Transactions on Microwave Theory&Techniques,2016,64(1):247-257.
    [6] ALBISHI A M,RAMAHI O M. Microwaves-based high sensitivity sensors for crack detection in metallic materials[J].IEEE Transactions on Microwave Theory&Techniques,2017,PP(99):1-9.
    [7] POZAR D M.微波工程[M]. 3版.北京:电子工业出版社,2006.POZAR D M. Microwave engineering[M]. 3rd. Beijing:Electronic Industry Press,2006.
    [8] STANDAERT A,ROUSSTIA M,SINAGA S,et al. Permittivity measurements in millimeter range of PTFE foams[J].IEEE Microwave&Wireless Components Letters,2017,27(8):766-768.
    [9] EBRAHIMI A,WITAYACHUMNANKUL W,AL-SARAWI S,et al. High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization[J]. IEEE Sensors Journal,2014,14(5):1345-1351.
    [10] YUN T,LIM S. High-Q,and miniaturized complementary split ring resonator-loaded substrate integrated waveguide microwave sensor for crack detection in metallic materials[J].Sensors&Actuators A Physical,2014,214(4):25-30.
    [11] YANG X,XIN L,JIAO X,et al. High-sensitivity structure for the measurement of complex permittivity based on SIW[J]. Iet Science Measurement&Technology,2017,11(5):532-537.
    [12]李芳,李超.微波异向介质:平面电路实现及应用[M].北京:电子工业出版社,2011.LI Fang,LI Chao. Microwave isotropic medium:realization and application of planar circuit[M]. Beijing:Electronic Industry Press,2011.
    [13] BONACHE J,GIL M,GIL I,et al. On the electrical characteristics of complementary metamaterial resonators[J].IEEE Microwave&Wireless Components Letters,2006,16(10):543-545.
    [14] KIM Y H,YOON S I,PARK S C,et al. A simple and direct biomolecule detection scheme based on a microwave resonator[J]. Sensors&Actuators B Chemical,2008,130(2):823-828.
    [15] BOYBAY M S,RAMAHI O M. Material characterization using complementary split-ring resonators[J]. IEEE Transactions on Instrumentation&Measurement, 2012, 61(11):3039-3046.
    [16] BOYBAY M S,RAMHI O M. Non-destructive thickness measurement using quasi-static resonators[J]. IEEE Microwave&Wireless Components Letters,2013,23(4):217-219.
    [17] ALBISHI A,RAMAHI O M. Detection of surface and subsurface cracks in metallic and non-metallic materials using a complementary split-ring resonator[J]. Sensors,2014,14(10):19354.
    [18] MEMON M U,LIM S. Review of electromagnetic-based crack sensors for metallic materials(recent research and future perspectives)[J]. Metals-Open Access Metallurgy Journal,2016,6(172):1-22.
    [19] SALIM A,LIM S. Complementary split-ring resonator-loaded microfluidic ethanol chemical sensor[J]. Sensors,2016,16(11):1802.
    [20] SU L,MATA-CONTRERAS J,VELEZ P,et al. Splitter/combiner microstrip sections loaded with pairs of complementary split ring resonators(CSRRs):modeling and optimization for differential sensing applications[J]. IEEE Transactions on Microwave Theory&Techniques,2016,64(12):4362-4370.
    [21] STANDAERT A,ROUSSTIA M,SINAGA S,et al. Permittivity measurements in millimeter range of PTFE foams[J]. IEEE Microwave&Wireless Components Letters,2017,27(8):766-768.
    [22] LI Q,XU F. Substrate integrated nonradiative dielectric waveguide bandpass filter[C]//IEEE International Conference on Communication Problem-Solving,2014:121-123.
    [23] CAO H,JIANG F,LIU J,et al. A CSRR-fed SIW cavitybacked fractal patch antenna for wireless energy harvesting and communication[J]. Sensors,2015,15(9):21196-21203.
    [24] RHBANOU A,BRI S,SABBANE M,et al. Design of substrate integerated waveguide bandpass filter based on metamaterials CSRRs[J]. Electrical&Electronic Engineering,2014,4(4):63-72.
    [25] DONG Y,ITOH T. Substrate integrated waveguide loaded by complementary split-ring resonators for miniaturized diplexer design[J]. IEEE Microwave&Wireless Components Letters,2011,21(1):10-12.
    [26] YANG X,XIN L,JIAO X,et al. High-sensitivity structure for the measurement of complex permittivity based on SIW[J]. Iet Science Measurement&Technology,2017,11(5):532-537.
    [27] XU F,WU K. Guided-wave and leakage characteristics of substrate integrated waveguide[J]. IEEE Transactions on Microwave Theory&Techniques,2005,53(1):66-73.
    [28] CHEN Q,HUANG K M,YANG X Q,et al. An artificial nerve network realization in the measurement of material permittivity[J]. Progress Electromagnetics. Research-pier,2011,116:347-361.
    [29] SIRCI S,SANCHEZ-SORIANO M S,MARTI'NEZ J D,et al. Design and multiphysics analysis of direct and crosscoupled SIW combline filters using electric and magnetic couplings[J]. IEEE Transactions on Microwave Theory&Techniques,2015,63(12):4341-4354.
    [30] FESHARAKI F,AKYEL C,WU K. Broadband permittivity measurement of dielectric materials using discontinuity in substrate integrated waveguide[J]. Electronics Letters,2013,49(3):194-196.
    [31] LOBATO-MORALES H,Murthy D V B,Corona-Chavez A,et al. Permittivity measurements at microwave frequencies using epsilon-nea-zero(ENZ)tunnel structure[J].IEEE Transactions on Microwave Theory&Techniques,2011,59(7):1863-1868.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700