射流马赫数对圆弧形凹面腔内激波聚焦过程的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Impact of Jet Mach Number on Shock Wave Focusing Processes in Circular-Shaped Cavity
  • 作者:陈鑫 ; 张威江 ; 王川 ; 谭胜
  • 英文作者:CHEN Xin;ZHANG Wei-jiang;WANG Chuan;TAN Sheng;Aeronautics and Engineering Institute,Air Force Engineering University;Collaborative Innovation Center for Advanced Aero-Engine;Chinese People's Liberation Army with Number of 94795;College of Aerospace Science and Engineering,National University of Defense Technology;
  • 关键词:激波聚焦 ; 径向入射 ; 圆弧形凹面腔 ; 射流马赫数
  • 英文关键词:Shock wave focusing;;Radial incident;;Circular-shaped cavity;;Jet Mach number
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:空军工程大学航空工程学院;先进航空发动机协同创新中心;中国人民解放军94795部队;国防科技大学空天科学学院;
  • 出版日期:2018-11-23 10:41
  • 出版单位:推进技术
  • 年:2019
  • 期:v.40;No.262
  • 基金:国家自然科学基金青年科学基金(51106178)
  • 语种:中文;
  • 页:TJJS201904011
  • 页数:11
  • CN:04
  • ISSN:11-1813/V
  • 分类号:90-100
摘要
为研究射流马赫数对连续超声速射流对撞流场演化及激波聚焦过程的影响,保持入射导流深度L=0.00mm不变,通过更换不同的Laval喷管,对马赫数分别为Ma=1.2,1.4,1.6和1.8时的实验工况凹面腔内反射聚焦过程进行了实验研究,用高速CCD(Charge coupled device)拍摄了圆弧形凹面腔中气流流场纹影照片,并用动态压力传感器测量了聚焦过程中流场的压力变化,对径向入射激波在凹面腔内的反射聚焦过程进行了描述。通过对比不同射流马赫数下激波反射聚焦过程,发现在低马赫数1.2时,表现出较强的激波完全聚焦特性,即前导激波碰撞形成反射激波,并反射聚焦形成三波点,从而在凹腔底部形成高温高压区触发爆震,前导激波完全聚焦过程在凹面腔内流场演化中占据主导地位。随着马赫数的增加,完全聚焦强度降低,在流场中的主导优势逐渐减弱;其激波聚焦频率受射流马赫数的影响较小,频率差值较小,基本保持一致。
        In order to study the effects of the jet Mach number on the evolution of continuous supersonic jet and the shock focusing process,keeping the depth of the deflector L=0.00 mm constant,by replacing different Laval nozzle,experiments were carried out to investigate the radial incident shock focusing in cavity where the Mach number were 1.2,1.4,1.6,1.8,respectively. The schlieren photos of flow field in cavity is captured by high-speed CCD camera,the dynamic pressure sensors is used to measure the pressure variation of the flow field during the focusing process,the behaviour of radial incident shock wave reflect and focus in a circular-shaped cavity was described. The shock wave focusing processes of different jet Mach number were compared,it is found that when the Mach number is 1.2,the perfect focusing characteristics of the shock wave are strong,that is,the leading shock wave collides to form the reflected shock wave,then the three-shock point is formed by the reflective focusing,thereby forming a high-temperature and high-pressure zone at the bottom of the cavity to trigger detonation. And the perfect focusing process of the leading shock wave occupies the dominant position in the flow field evolution of the cavity. With the increase of the Mach number,the perfect focusing intensity decreases,and the dominant advantage in the flow field gradually weakens; the focusing frequency of the shock wave is less affected by the jet Mach number,and the frequency difference is small and basically consistent.
引文
[1] Roy G D,Frolov S M,Borisov A A,et al. Pulse Detonation Propulsion:Challenges,Current Status,and Future Perspective[J]. Progress in Energy and Combustion Science,2004,30(6):545-672.
    [2]严传俊,刘军,范玮,等.脉冲爆震发动机工作原理与循环分析[J].推进技术,1996,17(3):56-63.(YAN Chuan-jun,LIU Jun,FAN Wei,et al. Operating Principle and Cycle Analysis of Pulse Detonation Engine[J]. Journal of Propulsion Technology,1996,17(3):56-63.)
    [3]严传俊,范玮,郑龙席,等.脉冲爆震发动机原理及关键技术[M].西安:西北工业大学出版社,2005.
    [4]刘大响,金捷. 21世纪世界航空动力技术发展趋势与展望[J].中国工程科学,2004,6(9):1-8.
    [5]王家骅,韩启祥.脉冲爆震发动机技术[M].北京:国防工业出版社,2012.
    [6] Levin V A,Nechaev J N,Tarasov A I. A New Approach to Organizing Operation Cycles in Pulsed Detonation Engines[C]. Moscow:High-Speed Deflagration and Detonation:Fundamentals and Control,2001:223-238.
    [7] Leyva I A,Tangirala V,Dean A J. Investigation of Unsteady Flow Field in a 2-Stage PDE Resonator[R].AIAA 2003-0715.
    [8] Taki S,Fujiwara T. A Numerical Study of Detonation Resonator[C]. Moscow:Application of Detonation to Propulsion,2004:309-320.
    [9] McManus K R,Dean A J. Experimental Evaluation of a Two-Stage Pulse Detonation Combustor[C]. Tucson:AIAA Joint Propulsion Conference&Exhibit,2005.
    [10]滕宏辉,王春,邓博,等.可燃气体中激波聚焦的点火特性[J].力学学报,2007,39(2):171-180.
    [11]周鸿.两步法高频爆震发动机(two-stage PDE)机理与特性研究[D].南京:南京航空航天大学,2008.
    [12]姜日红,武晓松,王栋.共振型PDE谐振腔喷嘴匹配关系研究[J].航空动力学报,2009,24(5):1006-1010.
    [13]李海鹏,何立明,陈鑫,等.不同结构形式凹面腔内的激波会聚起爆爆震波数值研究[J].兵工学报,2009,30(增刊2):47-51.
    [14]李海鹏,何立明,陈鑫,等.凹面腔内激波聚焦起爆爆震波过程的数值模拟[J].推进技术,2010,31(1):87-91.(LI Hai-peng,HE Li-ming,CHEN Xin,et al. Numerical Investigation of Detonation Initiation by Shock Wave Focusing over Parabolic Reflector[J]. Journal of Propulsion Technology,2010,31(1):87-91.)
    [15]李海鹏,张强,陈鑫,等.一种组合动力装置爆震点火的三维数值模拟[J].推进技术,2015,36(3):399-404.(LI Hai-peng,ZHANG qiang,CHEN Xin,et al. Three-Dimensional Simulation of Detonation Ignition for a Combined Propulsion System[J]. Journal of Propulsion Technology,2015,36(3):399-404.)
    [16]陈鑫,谭胜,王育虔,等.导流块深度对楔形空腔内激波聚焦过程的影响[J].航空动力学报,2017,32(10):2321-3229.
    [17]陈鑫,王川,张锋,等.轴向入射激波反射聚焦的实验和数值模拟[J].航空动力学报,2017,32(9):2063-2069.
    [18]朗道,栗弗席兹著.流体动力学[M].李植译.北京:高等教育出版社,2013.
    [19] Ben-Dor G. Shock Wave Reflection Phenomena(2ndEd.)[M]. Berlin:Springer-Verlag,2007.
    [20] Sturdevant B,Kulkarny V A. The Focusing of Weak Shock Waves[J]. Journal of Fluid Mechanics,1976,73(4):651-671.
    [21] Babinsky H,Onodera O,Takayama K,et al. The Influence of Entrance Geometry of Circular Reflectors on Shock Wave Focusing[J]. Computers and Fluids,1998,27(5-6):611-618.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700