特高压直流系统中大容量双水内冷调相机的作用及关键技术研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on the Function and Key Technology of the Large-capacity Dual Internal Water Cooled Synchronous Condenser in UHVDC System
  • 作者:任章鳌 ; 闫迎 ; 晏桂林 ; 徐波 ; 周卫华 ; 周挺
  • 英文作者:REN Zhang'ao;YAN Ying;YAN Guilin;XU Bo;ZHOU Weihua;ZHOU Ting;State Grid Hunan Electric Power Corporation Research Institute;State Grid Hunan Electric Power Corporation;
  • 关键词:特高压直流系统 ; 大容量双水内冷调相机 ; 动态无功调节 ; 冷却工艺 ; 设计优化
  • 英文关键词:UHVDC system;;large dual internal water cooled synchronous condenser;;dynamic reactive power regulation;;cooling technology;;design optimization
  • 中文刊名:GDYJ
  • 英文刊名:High Voltage Engineering
  • 机构:国网湖南省电力有限公司电力科学研究院;国网湖南省电力有限公司;
  • 出版日期:2018-12-28 10:54
  • 出版单位:高电压技术
  • 年:2019
  • 期:v.45;No.319
  • 基金:国网湖南省电力公司科技项目(5216A516002Z)~~
  • 语种:中文;
  • 页:GDYJ201906016
  • 页数:8
  • CN:06
  • ISSN:42-1239/TM
  • 分类号:121-128
摘要
大容量双水内冷调相机在特高压直流系统中具有快速响应的无功补偿支撑作用。为了满足大容量双水内冷调相机动态无功调节、快速响应和安全可靠性能要求,通过优化电磁设计,提高了调相机的暂态和次暂态特性、强励能力和出力范围。探讨了通风冷却系统设计和调相机定、转子温升计算。在绝缘设计方面,采用内屏蔽结构,通过半导体材料实现了均压层的屏蔽作用,增大换位填充倒角半径,提高了定子线棒角部电场的均匀性,采用一次成型的定子线棒防晕结构,优化了调相机的主要电气性能指标。在结构设计方面,定子绕组采用了端部整体灌胶结构,有效地防止了端部松动问题。定子铁芯使用全补偿、抗蠕变防松技术以防止铁芯因基频和倍频振动导致的松动。研究结果表明,大容量双水内冷调相机特殊的冷却方式、电磁、绝缘和结构工艺优化设计等关键技术,可以使得大容量双水调相机满足特高压直流系统无功支撑。
        Large-capacity dual-water internal cooling condenser has the function of reactive power compensation support with fast response in UHVDC system. In order to meet the performance requirements of dynamic reactive power regulation, fast response and safety, and reliability, we designed a large-capacity dual-water internal cooled camera to improve the transient and sub-transient characteristics, excitation power and output range of the camera. Moreover, we discussed the design of ventilation cooling system and the calculation of temperature rise of stator and rotor. In the aspect of insulation design, the inner shield structure is adopted, the shielding effect of the equalizing layer is realized through semiconductor materials, the chamfer radius of the transposition filling is increased, the electric field uniformity of the stator bar corner is increased, and the electrical performance index of the main regulator is optimized by adopting a once-through forming stator bar anti halo structure. In the aspect of structural design, the overall glue filling structure at the end is adopted for the stator winding, which effectively prevents the end from loosening. A full-compensation and creep-resistance technology to prevent loosening of the core is adopted for the stator core due to fundamental frequency and frequency doubling vibration. The research results show that the key technologies such as the special cooling mode,electromagnetic, insulation and structural process optimization of large-capacity dual-water internal cooled camera can make it to satisfy the reactive power support of UHVDC system.
引文
[1]刘振亚.中国电力与能源[M].北京:中国电力出版社,2012:96-103.LIU Zhenya.Electric power and energy in China[M].Beijing,China:China Electric Power Press,2012:96-103.
    [2]曾庆禹.特高压交直流输电系统技术经济分析[J].电网技术,2015,39(2):341-348.ZENG Qingyu.Techno-economic analysis of UHVAC and UHVDCpower transmission systems[J].Power System Technology,2015,39(2):341-348.
    [3]周孝信,鲁宗相,刘应梅,等.中国未来电网的发展模式和关键技术[J].中国电机工程学报,2014,34(29):4999-5008.ZHOU Xiaoxin,LU Zongxiang,LIU Yingmei,et al.Development models and key technologies of future grid in China[J].Proceedings of the CSEE,2014,34(29):4999-5008.
    [4]徐政.“±1 100 k V特高压直流输电技术和应用”专题特约主编寄语[J].高电压技术,2017,43(10):3137-3138.XU Zheng.Special section on±1 100 kV UHVDC transmission technology and application the guest editor’s letter[J].High Voltage Engineering,2017,43(10):3137-3138.
    [5]李清泉,李斌,刘洪顺,等.特高压混合无功补偿线路断路器失步故障开断特性[J].高电压技术,2017,43(12):4096-4102.LI Qingquan,LI Bin,LIU Hongshun,et al.Out-of-phase fault interruption characteristics of circuit breakers in UHV transmission line with hybrid reactive compensation[J].High Voltage Engineering,2017,43(12):4096-4102.
    [6]王华锋,林志光,张海峰,等.±800 kV特高压直流工程换流阀故障分析与优化设计方法[J].高电压技术,2017,43(1):67-73.WANG Huafeng,LIN Zhiguang,ZHANG Haifeng,et al.Fault analysis of±800 k V UHVDC transmission converter valve and optimal design method[J].High Voltage Engineering,2017,43(1):67-73.
    [7]邹家勇,余波,包维瀚,等.特高压变电站短路电流直流分量对接地网设计的影响[J].高电压技术,2017,43(5):1621-1627.ZOU Jiayong,YU Bo,BAO Weihan,et al.Influence of the DC component of short circuit current on grounding grid design of UHVsubstation[J].High Voltage Engineering,2017,43(5):1621-1627.
    [8]徐政,许烽.输电线路交改直的关键技术研究[J].高电压技术,2016,42(1):1-10.XU Zheng,XU Feng.Research on key technologies of AC-to-DCtransmission lines conversion[J].High Voltage Engineering,2016,42(1):1-10.
    [9]刘振亚,张启平,王雅婷,等.提高西北新甘青750 k V送端电网安全稳定水平的无功补偿措施[J].中国电机工程学报,2015,35(5):1015-1022.LIU Zhenya,ZhANG Qiping,WANG Yating,et al.Research on reactive compensation strategies for improving stability level of sending-end of 750 kV grid in Northwest China[J].Proceedings of the Chinese Society of Electrical Engineering,2015,35(5):1015-1022.
    [10]戴武昌,陈东魁,张威,等.大容量远距离交流输电系统无功平衡及稳态电压控制[J].电网技术,2013,37(4):l101-l105.DAI Wuchang,CHEN Dongkui,ZHANG Wei,et al.Reactive power balance and steady voltage control of large-scale long-distance ACtransmission system[J].Power System Technology,2013,37(4):1101-1105.
    [11]郭郓闻,张建设,胡云,等.大容量分布式STATCOM对南方电网交直流系统影响的实时仿真研究[J].高电压技术,2014,40(8):2586-2592.GUO Yunwen,ZHANG Jianshe,HU Yun,et al.Real-time simulation analysis of the impacts of distributed large-capacity STATCOM on AC/DC parallel system in china southern power grid[J].High Voltage Engineering,2014,40(8):2586-2592.
    [12]王艺璇,张鑫,穆清,等.特高压直流分层接入系统换相失败预防控制参数优化[J].高电压技术,2018,44(1):329-336.WANG Yixuan,ZHANG Xin,MU Qing,et al.Parameter optimization of commutation failure prevention and control of UHVDC hierarchical connection to AC grid system[J].High Voltage Engineering,2018,44(1):329-336.
    [13]SONG S H,LIM J U,MOON S I.Installation and operation of FACTSdevices for enhancing steady-state security[J].Electric Power Systems Research,2004,70(1):7-15.
    [14]SERCAN T,TARIK A,TORBJORN T,et al.Performance comparison of synchronous condenser and SVC[J].IEEE Transactions on Power Delivery,2008,23(3):1606-1612.
    [15]张雪松,朱宽军,司佳钧,等.特高压直流换流站端子温升计算及影响因素[J].高电压技术,2018,44(4):1351-1358.ZHANG Xuesong,ZHU Kuanjun,SI Jiajun,et al.Temperature rise calculation of connector terminal in UHV DC converter station and analysis of influencing factors[J].High Voltage Engineering,2018,44(4):1351-1358.
    [16]辜承林,陈乔夫,熊永前.电机学[M].3版.武汉:华中科技大学出版社,2010:45-56.GU Chenglin,CHEN Qiaofu,XIONG Yongqian.Electric machinery[M].3rd ed.Wuhan,China:Huazhong University of Science&Technology Press,2010:45-56.
    [17]王雅婷,张一驰,周勤勇,等.新一代大容量调相机在电网中的应用研究[J].电网技术,2017,41(1):22-28.WANG Yating,ZHANG Yichi,ZHOU Qinyong,et al.Study on application of new generation large capacity synchronous condenser in power grid[J].Power System Technology,2017,41(1):22-28.
    [18]宋平岗,吴继珍,邹欢.电网电压不平衡时模块化多电平换流器直接功率补偿控制策略[J].高电压技术,2016,42(7):2184-2192.SONG Pinggang,WU Jizhen,ZOU Huan.Direct power compensation control strategy for modular multilevel converter under unbalanced grid voltage conditions[J].High Voltage Engineering,2016,42(7):2184-2192.
    [19]李志强,蒋维勇,王彦滨,等.大容量新型调相机关键技术参数及其优化设计[J].大电机技术,2017(4):15-21.LI Zhiqiang,JIANG Weiyong,WANG Yanbin,et al.Key technical parameters and optimal design of new types of large capacity synchronous condenser[J].Large Electric Machine&Hydraulic Turbine,2017(4):15-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700