带旁通孔磁流变减振器动态特性的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Dynamic Characteristics of a Magneto-Rheological Damper Featuring Piston Bypass Holes
  • 作者:李国杰 ; 李利平 ; Subhash ; Rakheja ; 上官文斌
  • 英文作者:LI Guojie;LI Liping;Subhash Rakheja;SHANGGUAN Wenbin;School of Mechanical and Automotive Engineering,South China University of Technology;
  • 关键词:磁流变减振器 ; 旁通孔 ; 阻尼比 ; 艾林模型
  • 英文关键词:MR damper;;bypass hole;;damping ratio;;eyring model
  • 中文刊名:HNLG
  • 英文刊名:Journal of South China University of Technology(Natural Science Edition)
  • 机构:华南理工大学机械与汽车工程学院;
  • 出版日期:2018-12-15
  • 出版单位:华南理工大学学报(自然科学版)
  • 年:2018
  • 期:v.46;No.387
  • 基金:国家自然科学基金资助项目(51475171);; 广东省自然科学基金资助项目(2015A030310383)~~
  • 语种:中文;
  • 页:HNLG201812010
  • 页数:9
  • CN:12
  • ISSN:44-1251/T
  • 分类号:72-79+108
摘要
在不同的激振频率、不同激励电流下,对一种带旁通孔的磁流变减振器在MTS平台上进行阻尼力测试.该减振器的活塞具有不受磁场影响的3个旁通孔.实验结果表明,该减振器的阻尼力可以在较宽的激振速度范围内与激振速度近似成线性关系,随着激励电流和激振频率的增大,该减振器的阻尼力逐渐增大.在各种激振频率下,阻尼力均没有出现突增现象;但是当阻尼力达到一定数值后,阻尼力基本不再受活塞速度影响.这些特性可以有效提高车辆乘坐舒适性.通过引入液体的局部水头损失,对磁流变液分别采用宾汉模型和艾林模型,计算出减振器的阻尼力理论值.经比较,采用艾林模型得到的理论值与实验值吻合得更好.在各工况下,行程中间位置的阻尼力理论值与实验值最大误差小于2. 3%.若忽略液体的局部水头损失,阻尼力的理论值与实验值的误差将增大.该结果表明,引入局部水头损失及采用艾林模型进行阻尼力理论计算是合理的,研究结论可以对减振器的设计和优化提供参考.
        The damping force of a novel magneto-rheological( MR) damper was tested on MTS system in different excitation frequencies and different currents. The MR damper has three bypass holes in the piston. Experiment results indicate that the damping force has a quasi-linear relation to excitation velocity in a much broader range.Damping force also increases with applied currents. No damping force spurts at each excitation frequency. Damping force is sensitive to excitation frequencies. These characteristics make vehicles riding comfort better. At last,damping force is calculated by adopting the local head loss with Bingham model or Eyring model. Damping force calculated by Eyring model matches better with experimental data. Maximum deviation of damping force in each operating condition is less than 2. 3%. And if no local head loss was adopted,the damping force by calculation deviates far from experiment data. These results indicate that the calculation is reasonable and will contribute to design and optimization of MR damper.
引文
[1] GUO Da-lei,HU Hai-yan. Nonlinear stiffness of a magne-to-rheological damper[J]. Nonlinear Dynamics,2005,40:241-249.
    [2] ZENG Yi-hui,LIU Shao-jun,E Jia-qiang. Neuron PI con-trol for semi-active suspension system of tracked vehicle[J]. J Cent South Univ Technol,2011,18:444-450.
    [3]王炅,黄文良,陆静.磁流变阻尼器动力学模型及其应用[J].弹道学报,2003,15(1):46-50.WANG Jiong,HUANG Wen-liang,LU Jing. The dynamicmodel of magneto-rheological damper and its applications.Journal of Ballistics,2003,15(1):46-50.
    [4] BERLI C L A,VICENTE J D. A structural viscosity modelfor magnetorheology[J]. Appliedphysics Letters,2012,101:021903.
    [5] CHOOI W W,OYADIJI S O. Design,modelling and tes-ting of magnetorheological(MR)dampers using analyticalflow solutions[J]. Computers and Structures,2008,86:473-482.
    [6] SPENCER B F,DYKE S J,SAIN M K,et al. Phenomeno-logical model for magnetorheologicaldampers[J]. Journalof Engineering Mechanics,1997,123:230-238.
    [7] FOISTER R T,NEHL T W,KRUCKEMEYER W C,et al.2011 Magnetorheological(MR)piston assembly withpri-mary and secondary channels to improve MR damper-force:US Patent 20110100775 A1[P]. 2011-05-05.
    [8] SOHN J W,OHJ S,CHOI S B. Design and novel type ofamagneto-rheological damper featuring pistonbypass hole[J]. Smart Materials and Structures,2015,24:035013.
    [9] RENE J,LUIS A I. Lu Gre friction model for a magneto-rheological damper[J]. Structural Control and HealthMonitoring,2005,12:91-116.
    [10] PHU D,SHAH K,CHOI S B. Design of a new adaptive-fuzzy controller and its implementation for the damping-force control of a magnetorheologicaldamper[J]. SmartMaterStruct,2014,23:065012.
    [11] CHEN H,GUO K H. Constrained H_∞control of active-suspensions:an LMI approach[J]. IEEE Trans ControlSyst Technol,2005,13:412-421.
    [12] SHEN Y,GOLNARAGHI M F,HEPPLER G R. Semi-ac-tivevibration control schemes for suspension systems us-ingmagnetorheological dampers[J]. J Vib Control,2006,12:3-24.
    [13]邢海军,杨绍普,郭树起,等.一种磁流变阻尼器动态阻尼力模型[J].振动与冲击,2010,29(7):105-108.XING Hai-jun,YANG Shao-pu,GUO Shu-qi,et al. A no-vel dynamic model of magneto-rheological damper[J].Journal of Vibration and Shock,2010,29(7):105-108.
    [14] MOON S J,HUH Y C,JUNG H J,et al. Sub-optimal de-sign procedure of valve-mode magneto-rheological fluid-dampers for structural contro L[J]. KSCE Journal ofCivil Engineering,2011,15(5):867-873.
    [15] SZEMPLINSKA-STUPNICKA W,BAJKOWSKI J. The 1/2 sub-harmonic resonance and its transition to chaoticmotion in a non-linear oscillator[J]. International Jour-nal of Non-Linear Mechanics,1986,21(5):401-419.
    [16] XU Zhao-dong,SHEN Ya-peng,GUO Ying-qing. Semi-active control of structuresincorporated with magneto-rheologicaldampers using neural networks[J]. SmartMaterStruct,2003,12:80-87.
    [17] ZONG Lu-hang,GONG Xing-long,GUO Chao-yang,etal. Inverseneuro-fuzzy MR damper model and its appli-cation in vibration control of vehicle suspension system[J]. Vehicle System Dynamics:International Journal ofVehicle Mechanics and Mobility,2012,50(7),1025-1041.
    [18] LIONEL B,CHOIY T. NORMAN M W. Electro-rheologi-cal damper analysis using aneyringconstitutive relation-ship[J]. Journalof Intelligent Material Systems andStructures,2012,13:633-639.
    [19]王盛学,李著信,陈鑫,等.油液减振器空程异响发生的过程研究[J],机床与液压,2011,39(1):34-37.WANG Sheng-xue,LI Zhu-xin,CHEN Xin,et al. Thestudy of course of idle stroke abnormal noise of oil shockabsorber[J]. Machine Tool&Hydraulics,2011,39(1):34-37.
    [20]舒红宇,罗霜,汪明明,等.液力减振器空程冲击过程的流固耦合仿真与分析[J].振动与冲击,2015,34(21):124-128; 143.SHU Hong-yu,LUO Shuang,WANG Ming-ming,et al.Fluid-structure interaction simulation and analysis foroil-loss-travel impact of hydraulic shock absorber[J].Journal of Vibration and Shock,2015,34(21):124-128;143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700