基于双层超材料中的电场增强效应增强光学透射(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Enhanced optical transmission based on the electric field enhancement effect in a compact metal-dielectric double-layered films
  • 作者:钟敏
  • 英文作者:ZHONG Min;Hezhou University;
  • 关键词:超材料 ; 传输 ; 吸收
  • 英文关键词:metamaterials;;transmission;;absorption
  • 中文刊名:HWYH
  • 英文刊名:Journal of Infrared and Millimeter Waves
  • 机构:贺州学院;
  • 出版日期:2019-06-15
  • 出版单位:红外与毫米波学报
  • 年:2019
  • 期:v.38
  • 基金:Supported by Doctor’s scientific research foundation(HZUBS201503);; Young and Middle Teachers'Basic Ability Improvement Project of Guangxi(KY2016YB453);; Mathematical support autonomous discipline project of Hezhou University(2016HZXYSX01);; Innovation and entrepreneurship students project of Hezhou University(201611838018)
  • 语种:英文;
  • 页:HWYH201903011
  • 页数:6
  • CN:03
  • ISSN:31-1577/TN
  • 分类号:60-64+70
摘要
传输增强是基于非空心双层超材料滤波器的模拟验证.所提出的结构包含覆盖在连续介电层上的连续金属膜.与单金属层结构相比,模拟传输明显增强.模拟验证了介电层厚度和入射角对传输增强的影响.发现当厚度h1为20 nm时,实现了最大化的透射率增强.此外,所提出的紧凑金属-电介质双层薄膜在入射角达到45°时显示出透射率增强的稳定性,由于其非空心化设计策略,可以应用于许多潜在的领域.
        Transmission enhancement is simulated verification based on a non-hollowing double layer of metamaterial filter. The proposed structure contains a continuous metallic film covering on a continuous dielectric layer. The simulated transmission is enhanced obviously comparing the single metal layer structure. Effects of the dielectric layer thickness and the incident angle on the transmission enhancement are simulated verification. It is found that the maximized transmittance enhancement is achieved when the thickness h1 is 20 nm. Moreover,the proposed compact metal-dielectric double-layered films shows a stability of transmittance enhancement when the incident angle reaches to 45°,which can be applied in many potential fields due to its non-hollowing design strategy.
引文
[1]Zhu X F,Li K,Zhang P,et al. Implementation of dispersion-free slow acoustic wave propagation and phase engineering with helicalstructured metamaterials[J]. Nature Communications,2016,7:11731-11738.
    [2]Nguyen D M,Lee D,Rho J. Control of light absorbance using plasmonic grating based perfect absorber at visible and nearinfrared wavelengths[J]. Scientific Reports,2017,7:2611-2618.
    [3]Lai C H,Wang G A,Ling T K,et al. Near infrared surface-enhanced Raman scattering based on starshaped gold/silver nanoparticles and hyperbolic metamaterial,Scientific Reports,2017,7:5446-5453.
    [4]Galutin Y,Falek E,Karabchevsky A. Invisibility Cloaking Scheme by Evanescent Fields Distortion on Composite Plasmonic Waveguides with Si Nano-Spacer,Scientific Reports,2017,7:12076-12083.
    [5]Liu Z G,Lu W B,Yang W. Enhanced Bandwidth of High Directive Emission Fabry-Perot Resonator Antenna with Tapered Near-Zero Effective Index Using Metasurface,Scientific Reports,2017,7:11455-11464.
    [6]Xomalis A,Demirtzioglou I,Plum E,et al. Fibre-optic metadevice for all-optical signal modulation based on coherent absorption[J]. Nature Communications,2018,9:182-189.
    [7]Rodrigues S P,Lan S F,Kang L,et al,Intensity-dependent modulation of optically active signals in a chiral metamaterial[J]. Nature Communications,2017,8:14602-1469.
    [8]Barnes W L,Murray W A,Dintinger J,et al,Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film[J]. Ph Ysica L R Ev I Ew L Et T Ers,2004,9:107401-107404.
    [9]Zhang X Q,Gu J Q,Cao W,et al,Bilayer-fish-scale ultrabroad terahertz bandpass filter[J]. Optics Letters,2012,37:906-908.
    [10]Han N R,Chen Z C,Lim C S,et al. Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates[J]. Optics Express,2011,19:6990-6998.
    [11]Lan F,Yang Z Q,Qi L M,et al,Terahertz dual-resonance bandpass filter using bilayer reformativecomplementary metamaterial structures[J]. Optics Letters,2014,39:1709-1711.
    [12]Krishnan A,Thio T,JKim T,et al,Evanescently coupled resonance in surface plasmon enhanced transmission[J]. Optics Communications,2001,200:1-7.
    [13]Liang L J,Jin B B,Wu J B,et al,A flexible wideband bandpass terahertz filter using multi-layer metamaterials[J]. Appl. Phys. B,2013,113:285-290.
    [14]WANG L,GENG Z X,HE X J,et al,Realization of band-pass and low-pass filters on a single chip in terahertz regime[J]. Optoelectronics Letters,2015,11:33-35.
    [15]Zhong M,Experimental and numerical study of a broad pass-band low-loss optical metamaterials filter[J]. Optical Materials,2015,47:62-66.
    [16]Kats M A,Sharma D,Lin J,et al,Ultra-thin perfect absorber employing a tunable phase change material[J],Applied Physics Letters,2012,101:221101-221106.
    [17]Kats M A,Blanchard R,Ramanathan S,et al,Thin-film interference in lossy,ultra-thin layers[J]. Opt. Photonics News,2014,25:40-47.
    [18]Dotan H,Kfir O,Sharlin E,Oshri Blank et al,Resonant light trapping in ultrathin films for water splitting[J]. Nat. Mater. 2013,12:158-164.
    [19]Corrigan T D,Park D H,Dennis Drew H,et al,Broadband and mid-infrared absorber based on dielectric-thin metal film multilayers[J],APPLIED OPTICS 2012,51:1109-1114.
    [20]Yang C Y,W Shen W D,Zhang Y G,et al,Compact Multilayer Film Structure for Angle Insensitive Color Filtering[J]. Scientific Reports,2015,5:9285-95.
    [21]Ji D X,Song H M,Zeng X,et al,Broadband absorption engineering of hyperbolic metafilm patterns[J]. Scientific Reports,20104,4:4498-4506.
    [22]Dong Z G,Zhu S N,Liu H,Numerical simulations of negative-index refraction in wedge-shaped metamaterials[J]. Phys Rev E,2005,72:016607-016610.
    [23]Zhang S,Fan W J,Paniou N C,et al,Experimental demonstration of near-infrared negative index metamaterials[J]. Phys. Rev. Lett.95(2005):137404-137407.
    [24]Kats M. A.,Blanchard R.,Ramanathan S. et al,ultra-thin layers. Opt. Photonics News,2014,25:40-47.
    [25]Cleary J. W,Soref R,. Hendrickson J R. Long-wave infrared tunable thin film perfect absorber utilizing highly doped silicon-onsapphire[J]. Opt. Express,2013,21:19363-19374.
    [26]Ding F,Cui Y X,Ge X C,Ultra-broadband microwave metamaterial absorber[J]. Applied Physics Letters,2012,100:103506-103509.
    [27]Yi J J,Piau G P,Andréde Lustrac,et al,Electromagnetic field tapering using all-dielectric gradient index materials[J]. Scientific Reports,2016,6:30661-30667.
    [28]Yang C Y,Shen W D,Zhang Y G,et al,Compact Multilayer Film Structure for Angle Insensitive Color Filtering[J]. Scientific Reports,2015,5:9285-9289.
    [29]Corrigan T D,Park D H,Dennis H,et al,Broadband and mid-infrared absorber based on dielectric-thin metal film multilayers[J].Applied Optics,2012,51:1109-1114.
    [30]Hedayati M K,Javaherirahim M,Mozooni B,et al,Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic Metamaterials[J]. Adv. Mater. 2011,23:5410-5414.
    [31]Mary A,Rodrigo S G,Garcia-Vidal F G,et al,Theory of negativerefractive-index response of double-fishnet structures[J]. Phys.Rev. Lett. 2008,101:103902-103905.
    [32]Smith D R,Vier D C,Koschny T,et al,Electromagnetic parameter retrieval from inhomogeneous metamaterials[J]. Phys. Rev. E,2005,71:036617-036627.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700