富锂锰基正极材料研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progresses on Li- and Mn-Rich Cathodes
  • 作者:刘鹏飞 ; 何伟 ; 麻亚挺 ; 库伦 ; 蔡余新 ; 刘群 ; 谢清水 ; 王来森 ; 罗晴 ; 彭栋梁
  • 英文作者:Liu Pengfei;He Wei;Ma Yating;Ku Lun;Cai Yuxin;Liu Qun;Xie Qingshui;Wang Laisen;Luo Qing;Peng Dongliang;College of Materials,Xiamen University;
  • 关键词:富锂锰基正极材料 ; 锂离子电池 ; 层状材料 ; 阴离子氧化还原对 ; 表征技术
  • 英文关键词:Li-and Mn-rich cathode materials;;lithium ion batteries;;layered oxides;;anionic redox;;characterization techniques
  • 中文刊名:ZGJB
  • 英文刊名:China Basic Science
  • 机构:厦门大学材料学院;
  • 出版日期:2019-04-15
  • 出版单位:中国基础科学
  • 年:2019
  • 期:v.21;No.128
  • 基金:国家重点研发计划“纳米科技”重点专项(2016YFA0202600)
  • 语种:中文;
  • 页:ZGJB201902002
  • 页数:8
  • CN:02
  • ISSN:11-4427/G3
  • 分类号:16-23
摘要
目前富锂锰基正极材料以其高比容量(>250mAh/g)、高工作电压、低成本、环境友好等优点受到了学术界的极大关注,是极具潜力的下一代锂离子电池正极材料。然而,循环过程中富锂锰基正极材料存在首次库仑效率低、倍率性能差、容量与电压衰减严重等缺点,使其实际应用受到了极大限制。经过几年来的深入研究,人们对富锂锰基正极材料的理论认识逐步加深,发展了针对富锂锰基正极材料各种缺点的改性方法,取得了一系列重要进展。本文总结了近几年来学术界在富锂锰基正极材料方面的重要研究进展,包括放电比容量、首次库仑效率、循环性能、倍率性能、电压稳定性,总结了针对富锂锰基正极材料的各种实验表征手段。此外,还介绍了富锂锰基正极材料在理论研究方面的重要方法以及在全电池方面的应用。最后,基于目前的实验进展和理论认知,对富锂锰基正极材料今后的发展进行了展望。
        Li-rich layered oxide cathodes have attracted great attention, and are among the most promising cathodes in the next generation lithium ion batteries because of their high specific capacity(>250 mAh/g), high operation voltage, low cost and environment-friendly. However, they suffer from severe disadvantages during cycling, such as low initial Coulombic efficiency, poor rate capability, rapid capacity fading and voltage decay, prohibiting their practical application. After exploiting and lucubrating on Li-rich layered oxide cathodes for years, our theoretical understanding have been deepened greatly, a variety of modifying methods have been developed to conquer the above-mentioned shortcomings and great improvements have been achieved. In this article, we summarize the most important processes in academia on Li-rich layered oxide cathodes in recent years including discharge capacity, initial Coulombic efficiency, cycling performance, rate capability and voltage stability. In addition, various characterization techniques for Li-rich layered oxide cathodes are also included. Furthermore, we also introduce some important theoretical methods on Li-rich layered oxide cathodes especially a few representative accomplishments. Meanwhile, the applications of Li-rich layered oxide cathodes in full cells are also briefly introduced. At last, a perspective for the further development on Li-rich layered oxide cathodes is also given on the base of the current theoretical and experimental understanding.
引文
[1] Ming J,Cao Z,Wahyudi W,et al.New insights on graphite anode stability in rechargeable batteries:Li ion coordination structures prevail over solid electrolyte interphases [J].ACS Energy Letters,2018,3:335—340
    [2] Lin L,Ma Y,Xie Q,et al.Copper-nanoparticle-induced porous Si/Cu composite films as an anode for lithium ion batteries [J].ACS Nano,2017,11:6893—6903
    [3] Liu Q,Su X,Lei D,et al.Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping [J].Nature Energy,2018,3:936—943
    [4] Jiang C,Tang Z,Deng S,et al.High-performance carbon-coated mesoporous LiMn2O4 cathode materials synthesized from a novel hydrated layered-spinel lithium manganate composite [J].RSC Advances,2017,7:3746—3751
    [5] Hu J,Li W,Duan Y,et al.Single-particle performances and properties of LiFePO4 nanocrystals for Li-ion batteries [J].Advanced Energy Materials,2017,7:1601894—1601904
    [6] Zheng J,Yan P,Estevez L,et al.Effect of calcination temperature on the electrochemical properties of nickel-rich LiNi0.76Mn0.14Co0.10O2 cathodes for lithium-ion batteries [J].Nano Energy,2018,49:538—548
    [7] Yang H,Wu H H,Ge M,et al.Simultaneously dual modification of Ni-rich layered oxide cathode for high-energy lithium-ion batteries [J].Advanced Functional Materials,2019,29:1808825—1808838
    [8] Hy S,Liu H,Zhang M,et al.Performance and design considerations for lithium excess layered oxide positive electrode materials for lithium ion batteries [J].Energy & Environmental Science,2016,9:1931—1954
    [9] Nayak P K,Erickson E M,Schipper F,et al.Review on challenges and recent advances in the electrochemical performance of high capacity Li-and Mn-rich cathode materials for Li-ion batteries [J].Advanced Energy Materials,2018,8:1702397—1702413
    [10] Pimenta V,Sathiya M,Batuk D,et al.Synthesis of Li-rich NMC:a comprehensive study [J].Chemistry of Materials,2017,29:9923—9936
    [11] Li M,Lu J,Chen Z,et al.30 years of lithium-ion batteries [J].Adv Mater,2018,e1800561
    [12] Yoo H.D,Liang Y,Li Y,et al.High areal capacity hybrid magnesium-lithium-ion battery with 99.9% coulombic efficiency for large-scale energy storage [J].ACS Appl Mater Interfaces,2015,7:7001—7007
    [13] Pei Y,Xu C Y,Xiao Y C,et al.Phase transition induced synthesis of layered/spinel heterostructure with enhanced electrochemical properties [J].Advanced Functional Materials,2017,27:1604394—1604405
    [14] Pei Y,Chen Q,Xiao Y C,et al.Understanding the phase transitions in spinel-layered-rock salt system:criterion for the rational design of LLO/spinel nanocomposites [J].Nano Energy,2017,40:566—575
    [15] Ma G,Wang L,He X,et al.Pseudoconcentrated electrolyte with high ionic conductivity and stability enables high-voltage lithium-ion battery Chemistry [J].ACS Applied Energy Materials,2018,1:5446—5452
    [16] Chong S,Chen Y,Yan W,et al.Suppressing capacity fading and voltage decay of Li-Rich layered cathode material by a surface nano-protective layer of CoF2 for lithium-ion batteries [J].Journal of Power Sources,2016,332:230—239
    [17] Liu W,Oh P,Liu X,et al.Countering voltage decay and capacity fading of lithium-rich cathode material at 60 oC by hybrid surface protection layers [J].Advanced Energy Materials,2015,5:1500274—1500285
    [18] Feng X,Gao Y,Ben L,et al.Enhanced electrochemical performance of ti-doped Li1.2Mn0.54Co0.13Ni0.13O2 for lithium-ion batteries [J].Journal of Power Sources,2016,317:74—80
    [19] Nayak P K,Grinblat J,Levi M,et al.Al doping for mitigating the capacity fading and voltage decay of layered Li and Mn-rich cathodes for Li-ion batteries [J].Advanced Energy Materials,2016,6:1502398—1502411
    [20] Li X,Qiao Y,Guo S,et al.A new type of li-rich rock-salt oxide Li2Ni1/3Ru2/3O3 with reversible anionic redox chemistry [J].Adv Mater,2019,31:e1807825
    [21] Zuo Y,Li B,Jiang N,et al.A high-capacity o2-type Li-rich cathode material with a single-layer Li2MnO3 superstructure [J].Adv Mater,2018,30:e1707255
    [22] Lee J,Kitchaev D A,Kwon D H,et al.Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials [J].Nature,2018,556:185—190
    [23] Thackeray M M,Kang S H,Johnson C S,et al.Li2MnO3-stabilized LiMO2 (M=Mn,Ni,Co) electrodes for lithium-ion batteries [J].Journal of Materials Chemistry,2007,17:3112—3125
    [24] Guo L,Zhao N,Li J,et al.Surface double phase network modified lithium rich layered oxides with improved rate capability for Li-ion batteries [J].ACS Applied Materials & Interfaces,2015,7:391—399
    [25] Zheng J M,Myeong S,Cho W,et al.Li- and Mn-rich cathode materials:challenges to commercialization [J].Advanced Energy Materials,2017,7:1601284
    [26] Sun Y K,Lee M J,Yoon C S,et al.The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries [J].Advanced Materials,2012,24:1192—1196
    [27] Yu X Q,Lyu Y C,Gu L,et al.Understanding the rate capability of high-energy-density Li-rich layered Li1.2Ni0.15Co0.1Mn0.55O2 cathode materials [J].Advanced Energy Materials,2014,4:1300950
    [28] Zhou Y K,Bai P F,Tang H Q,et al.Chemical deposition synthesis of desirable high-rate capability Al2O3-coated Li1.2Mn0.54Ni0.13Co0.13O2 as a lithium ion battery cathode material [J].Journal of Electroanalytical Chemistry,2016,782:256—263
    [29] Chen D,Zheng F,Li L,et al.Effect of Li3PO4 coating of layered lithium-rich oxide on electrochemical performance [J].Journal of Power Sources,2017,341:147—155
    [30] Chen S,Zheng Y,Lu Y,et al.Enhanced electrochemical performance of layered lithium-rich cathode materials by constructing spinel-structure skin and ferric oxide islands [J].ACS Applied Materials & Interfaces,2017,9(10):8669—8678
    [31] Qiu B,Zhang M,Wu L,et al.Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries [J].Nature Communications,2016,7:12108
    [32] Qiao Q Q,Li G R,Wang Y L,et al.To enhance the capacity of Li-rich layered oxides by surface modification with metal-organic frameworks (MOFs) as cathodes for advanced lithium-ion batteries [J].Journal of Materials Chemistry A,2016,4:4440—4447
    [33] Ku L,Cai Y X,Ma Y T,et al.Enhanced electrochemical performances of layered-spinel heterostructured lithium-rich Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials [J].Chemical Engineering Journal,2019,370:499—507
    [34] Deng B D,Chen Y Z,Wu P Y,et al.Lithium-rich layered oxide nanowires bearing porous structures and spinel domains as cathode materials for lithium-ion batteries [J].Journal of Power Sources,2019,418:122—129
    [35] Li X,Zhang K,Mitlin D,et al.Fundamental insight into Zr modification of Li-and Mn-rich cathodes:combined transmission electron microscopy and electrochemical impedance spectroscopy study [J].Chemistry of Materials,2018,30:2566—2573
    [36] Hu E,Yu X,Lin R,et al.Evolution of redox couples in Li-and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release [J].Nature Energy,2018,3:690—698
    [37] Assat G,Foix D,Delacourt C,et al.Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes [J].Nat Commun,2017,8:2219
    [38] Pajot S,Feydi P,Weill F,et al.Synthesis of Li and Mn-Rich layered oxides as concentration-gradients for lithium-ion batteries [J].Journal of The Electrochemical Society,2018,165:A425—A433
    [39] Lee M J,Lho E,Oh P,et al.Simultaneous surface modification method for 0.4Li2MnO3—0.6LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries:Acid treatment and LiCoPO4 coating [J].Nano Research,2017,10:4210—4220
    [40] Zhao S,Sun B,Yan K,et al.Aegis of lithium-rich cathode materials via heterostructured LiAlF4 coating for high-performance lithium-ion batteries [J].ACS Applied Materials & Interfaces,2018,10:33260—33268
    [41] Zheng J C,Yang Z,Wang P B,et al.Multiple linkage modification of lithium-rich layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 for lithium ion battery [J].ACS Applied Materials & Interfaces,2018,10:31324—31329
    [42] Zhang X D,Shi J L,Liang J Y,et al.Suppressing surface lattice oxygen release of Li-Rich cathode materials via heterostructured spinel Li4Mn5O12 coating [J].Advanced Materials,2018,30:1801751
    [43] Wu B,Yang X,Jiang X,et al.Synchronous tailoring surface structure and chemical composition of Li-rich-layered oxide for high-energy lithium-ion batteries [J].Advanced Functional Materials,2018,28:1803392
    [44] Ji Y,Li R,Mu D,et al.Surface modification of Li1.2Mn0.56Ni0.16Co0.08O2 cathode material by supercritical CO2 for lithium-ion batteries [J].Journal of The Electrochemical Society,2018,165:A2880—A2888
    [45] Xiao Z,Meng J,Li Q,et al.Novel MOF shell-derived surface modification of Li-rich layered oxide cathode for enhanced lithium storage [J].Science Bulletin,2018,63:46—53
    [46] Shang H,Ning F,Li B,et al.Suppressing voltage decay of a lithium-rich cathode material by surface enrichment with atomic ruthenium [J].ACS Applied Materials & Interfaces,2018,10:21349—21355
    [47] Liu Y,Liu D,Wu H H,et al.Improved cycling stability of Na-doped cathode materials Li1.2Ni0.2Mn0.6O2 via a facile synthesis [J].ACS Sustainable Chemistry & Engineering,2018,6:13045—13055
    [48] Qing R P,Shi J L,Xiao D D,et al.Enhancing the kinetics of Li-rich cathode materials through the pinning effects of gradient surface Na+ doping [J].Advanced Energy Materials,2016,6:1501914
    [49] Han J,Zheng H,Hu Z,et al.Facile synthesis of Li-rich layered oxides with spinel-structure decoration as high-rate cathode for lithium-ion batteries [J].Electrochimica Acta,2019,299:844—852
    [50] Yu F D,Que L F,Xu C Y,et al.Dual conductive surface engineering of Li-Rich oxides cathode for superior high-energy-density Li-Ion batteries [J].Nano Energy,2019,59:527—536
    [51] Liu S,Liu Z,Shen X,et al.Surface doping to enhance structural integrity and performance of Li-rich layered oxide [J].Advanced Energy Materials,2018,8:1802105
    [52] Yu C,Wang H,Guan X,et al.Conductivity and electrochemical performance of cathode xLi2MnO3·(1-x) LiMn1/3Ni1/3Co1/3O2 (x= 0.1,0.2,0.3,0.4) at different temperatures [J].Journal of Alloys and Compounds,2013,546:239—245
    [53] Zheng J,Shi W,Gu M,et al.Electrochemical kinetics and performance of layered composite cathode material Li [Li0.2Ni0.2Mn0.6]O2 [J].Journal of The Electrochemical Society,2013,160:A2212—A2219
    [54] Yuan B,Liao S X,Xin Y,et al.Cobalt-doped lithium-rich cathode with superior electrochemical performance for lithium-ion batteries [J].Rsc Advances,2015,5:2947—2951
    [55] Song B,Lai M.O,Lu L.Influence of Ru substitution on Li-rich 0.55 Li2MnO3·0.45LiNi1/3Co1/3Mn1/3O2 cathode for Li-ion batteries [J].Electrochimica Acta,2012,80:187—195
    [56] Wang Y,Yang Z,Qian Y,et al.New insights into improving rate performance of lithium-rich cathode material [J].Advanced Materials,2015,27:3915—3920
    [57] Qiao Q Q,Qin L,Li G R,et al.Sn-stabilized Li-rich layered Li (Li0.17Ni0.25Mn0.58)O2 oxide as a cathode for advanced lithium-ion batteries [J].Journal of Materials Chemistry A,2015,3:17627—17634
    [58] Park J H,Lim J,Yoon J,et al.The effects of Mo doping on 0.3Li [Li0.33Mn0.67]O2·0.7Li [Ni0.5Co0.2Mn0.3]O2 cathode material [J].Dalton transactions,2012,41:3053—3059
    [59] Yu R,Zhang X,Liu T,et al.Spinel/layered heterostructured lithium-rich oxide nanowires as cathode material for high-energy lithium-ion batteries [J].ACS Applied Materials & Interfaces,2017,9:41210—41223
    [60] Xia Q,Zhao X,Xu M,et al.A Li-rich Layered@Spinel@Carbon heterostructured cathode material for high capacity and high rate lithium-ion batteries fabricated via an in situ synchronous carbonization-reduction method [J].Journal of Materials Chemistry A,2015,3:3995—4003
    [61] Luo D,Li G,Fu C,et al.A new spinel-layered Li-rich microsphere as a high-rate cathode material for Li-ion batteries [J].Advanced Energy Materials,2014,4:1400062
    [62] Sun Y K,Lee M J,Yoon C S,et al.The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries [J].Advanced Materials,2012,24:1192—1196
    [63] Wu Y,Manthiram A.High capacity,surface-modified layered Li [Li(1-x)/3Mn(2-x)/3Nix/3Cox/3]O2 cathodes with low irreversible capacity loss [J].Electrochemical and Solid-State Letters,2006,9:A221—A224
    [64] Wang Z,Liu E,He C,et al.Effect of amorphous FePO4 coating on structure and electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 as cathode material for Li-ion batteries [J].Journal of Power Sources,2013,236:25—32
    [65] Wu F,Zhang X,Zhao T,et al.Multifunctional AlPO4 coating for improving electrochemical properties of low-cost Li [Li0.2Fe0.1Ni0.15Mn0.55]O2 cathode materials for lithium-ion batteries [J].ACS Applied Materials & Interfaces,2015,7:3773—3781
    [66] Liu Y,Liu S,Wang Y,et al.Effect of MnO2 modification on electrochemical performance of LiNi0.2Li0.2Mn0.6O2 layered solid solution cathode [J].Journal of Power Sources,2013,222:455—460
    [67] Liu J,Reeja-Jayan B,Manthiram A.Conductive surface modification with aluminum of high capacity layered Li [Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes [J].The Journal of Physical Chemistry C,2010,114:9528—9533
    [68] Liu J,Wang Q,Reeja-Jayan B,et al.Carbon-coated high capacity layered Li [Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes [J].Electrochemistry Communications,2010,12:750—753
    [69] Zheng J,Wu X,Yang Y.A comparison of preparation method on the electrochemical performance of cathode material Li [Li0.2Mn0.54Ni0.13Co0.13]O2 for lithium ion battery [J].Electrochimica Acta,2011,56:3071—3078
    [70] He X,Wang J,Kloepsch R,et al.Enhanced electrochemical performance in lithium ion batteries of a hollow spherical lithium-rich cathode material synthesized by a molten salt method [J].Nano Research,2014,7:110—118
    [71] Li Y,Wu C,Bai Y,et al.Hierarchical mesoporous lithium-rich Li [Li0.2Ni0.2Mn0.6]O2 cathode material synthesized via ice templating for lithium-ion battery [J].ACS Applied Materials & Interfaces,2016,8:18832—18840
    [72] Ku K,Hong J,Kim H,et al.Suppression of voltage decay through manganese deactivation and nickel redox buffering in high-energy layered lithium-rich electrodes [J].Advanced Energy Materials,2018,8:1800606—1800614
    [73] Zheng F,Yang C,Xiong X,et al.Nanoscale surface modification of lithium-rich layered-oxide composite cathodes for suppressing voltage fade [J].Angew Chem Int Ed Engl,2015,54:13058—13062
    [74] Huang J,Liu H,Hu T,et al.Enhancing the electrochemical performance of li-rich layered oxide Li1.13Ni0.3Mn0.57O2 via WO3 doping and accompanying spontaneous surface phase formation [J].Journal of Power Sources,2018,375:21—28
    [75] Meng J,Ma Q,Xu L,et al.Improving cycling stability and suppressing voltage fade of layered lithium-rich cathode materials via SiO2 shell coating [J].Ionics,2018:1—12
    [76] Chen S,Chen Z,Xia M,et al.Toward alleviating voltage decay by sodium substitution in lithium-rich manganese-based oxide cathodes [J].ACS Applied Energy Materials,2018,1:4065—4074
    [77] Prakasha K R,Sathish M,Bera P,et al.Mitigating the surface degradation and voltage decay of Li1.2Ni0.13Mn0.54Co0.13O2 cathode material through surface modification using Li2ZrO3 [J].ACS Omega,2017,2:2308—2316
    [78] Yang X,Wang D,Yu R,et al.Suppressed capacity/voltage fading of high-capacity lithium-rich layered materials via the design of heterogeneous distribution in the composition [J].Journal of Materials Chemistry A,2014,2(11):3899—3911
    [79] Vu A,Walker L K,Bareňo J,et al.Effects of cycling temperatures on the voltage fade phenomenon in 0.5Li2MnO3·0.5LiNi0.375Mn0.375Co0.25O2 cathodes [J].Journal of Power Sources,2015,280:155—158
    [80] Yang J,Xiao L,He W,et al.Understanding voltage decay in lithium-rich manganese-based layered cathode materials by limiting cutoff voltage [J].ACS Appl Mater Interfaces,2016,8:18867—18877
    [81] Zhang S,Gu H,Pan H,et al.A novel strategy to suppress capacity and voltage fading of Li- and Mn-rich layered oxide cathode material for lithium-ion batteries [J].Advanced Energy Materials,2017,7:1601066—1601078
    [82] Zhang S J,Deng Y P,Wu Q H,et al.Sodium-alginate-based binders for lithium-rich cathode materials in lithium-ion batteries to suppress voltage and capacity fading [J].ChemElectroChem,2018,5:1321—1329
    [83] Zheng J,Myeong S,Cho W,et al.Li-and Mn-rich cathode materials:challenges to commercialization [J].Advanced Energy Materials,2017,7:1601284
    [84] Zhao E,Yu X,Wang F,et al.High-capacity lithium-rich cathode oxides with multivalent cationic and anionic redox reactions for lithium ion batteries [J].Science China Chemistry,2017,60:1483—1493
    [85] Nayak P K,Erickson E M,Schipper F,et al.Review on challenges and recent advances in the electrochemical performance of high capacity li- and mn-rich cathode materials for li-ion batteries [J].Advanced Energy Materials,2017,1702397
    [86] Nayak P K,Penki T R,Markovsky B,et al.Electrochemical performance of li- and mn-rich cathodes in full cells with prelithiated graphite negative electrodes [J].ACS Energy Letters,2017,2:544—548
    [87] Rozier P,Tarascon J M.Review-Li-rich layered oxide cathodes for next-generation li-ion batteries:chances and challenges [J].Journal of The Electrochemical Society,2015,162:A2490—A2499
    [88] Manthiram A,Knight J C,Myung S.-T,et al.Nickel-rich and lithium-rich layered oxide cathodes:progress and perspectives [J].Advanced Energy Materials,2016,6:1501010
    [89] Yan J,Liu X,Li B.Recent progress in Li-rich layered oxides as cathode materials for Li-ion batteries [J].RSC Advances,2014,4:63268—63284
    [90] Sathiya M,Abakumov A M,Foix D,et al.Origin of voltage decay in high-capacity layered oxide electrodes [J].Nature Materials,2015,14:230
    [91] Shi J L,Xiao D D,Zhang X D,et al.Improving the structural stability of Li-rich cathode materials via reservation of cations in the Li-slab for Li-ion batteries [J].Nano Research,2017,10:4201—4209
    [92] Ye J,Li Y,Zhang L,et al.Fabrication and performance of high energy Li-Ion battery based on the spherical Li [Li0.2Ni0.16Co0.1Mn0.54]O2 cathode and Si anode [J].ACS applied materials & interfaces,2015,8:208—214
    [93] Qiu B,Zhang Q,Hu H,et al.Electrochemical investigation of Li-excess layered oxide cathode materials/mesocarbon microbead in 18650 batteries [J].Electrochimica Acta,2014,123:317—324
    [94] Qiu B,Zhang M,Wu L,et al.Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries [J].Nature Communications,2016,7:12108
    [95] Li X,Qiao Y,Guo S,et al.Direct visualization of the reversible O2-/O- redox process in Li-Rich cathode materials [J].Advanced Materials,2018,30:1705197
    [96] Li B,Xia D.Anionic redox in rechargeable lithium batteries [J].Advanced Materials,2017,29:1701054
    [97] Rong X,Liu J,Hu E,et al.Structure-induced reversible anionic redox activity in Na layered oxide cathode [J].Joule,2018,2:125—140
    [98] Shi S,Gao J,Liu Y,et al.Multi-scale computation methods:Their applications in lithium-ion battery research and development [J].Chinese Physics B,2016,25:018212
    [99] Lee J,Kitchaev D A,Kwon D H,et al.Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials [J].Nature,2018,556:185—190
    [100] Ma Y,Liu P,Xie Q,et al.Double-shell Li-rich layered oxide hollow microspheres with sandwich-like carbon@spinel@layered@spinel@carbon shells as high-rate lithium ion battery cathode [J].Nano Energy,2019,59:184—196
    [101] Li B,Yan H,Ma J,et al.Manipulating the electronic structure of Li-rich manganese-based oxide using polyanions:Towards better electrochemical performance [J].Advanced Functional Materials,2014,24:5112—5118

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700