钢筋混凝土剪力墙在冲击荷载作用下的数值模拟分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical simulation analysis for RC shear walls under impact load
  • 作者:易伟建 ; 史先达
  • 英文作者:YI Weijian;SHI Xianda;College of Civil Engineering, Hunan University;
  • 关键词:冲击荷载 ; 剪力墙 ; 动态响应 ; 基于能量的设计方法
  • 英文关键词:impact load;;shear wall;;dynamic response;;design method based on energy
  • 中文刊名:ZDCJ
  • 英文刊名:Journal of Vibration and Shock
  • 机构:湖南大学土木工程学院;
  • 出版日期:2019-07-15
  • 出版单位:振动与冲击
  • 年:2019
  • 期:v.38;No.345
  • 基金:国家自然科学基金(51338004)
  • 语种:中文;
  • 页:ZDCJ201913016
  • 页数:9
  • CN:13
  • ISSN:31-1316/TU
  • 分类号:110-118
摘要
为了研究钢筋混凝土墙在冲击荷载作用下的性能,首先利用LS-DYNA软件建立有限元模型对已有的试验进行了模拟,模拟结果和试验数据吻合良好证明了模型的正确性。在此基础上建立了7组28个钢筋混凝土墙在冲击荷载作用下的LS-DYNA有限元模型,分析冲击能量、冲击质量、轴压比和配筋率等因素对钢筋混凝土墙体抗冲击性能的影响;结果表明:冲击质量相同时,冲击能量和墙中部最大位移成线性增长的关系;而冲击能量相同时,冲击质量的改变将影响冲击过程中能量在钢筋和混凝土中的分配;随着冲击质量减小冲击速度增大,混凝土局部损伤加重,钢筋吸收能量减小,变形消耗的能量减小导致位移减小;轴压比小于0.3时,轴力对抗冲击能力有利,小轴压比的情况下可以不考虑轴力进行设计,结果偏于安全。通过对基于能量的设计方法进行讨论,提出了利用墙板塑性铰线法的静力设计方法来抵抗对应冲击能量作用下的设计思路,并总结了设计流程且对公式中的参数给出了建议取值。
        In order to study performances of reinforced concrete(RC) walls under impact load, the software LS-DYNA was used to establish a finite element(FE) model, and simulate the existing tests. The simulation results agreed well with the test data to prove the correctness of the established model. Then the LS-DYNA FE model for 28 RC shear walls divided into 7 groups under impact load was established to analyze effects of impact energy, impact mass, axial compression ratio and reinforcement ratio on anti-impact performance of RC shear walls. The results indicated that when impact mass keeps unchanged, impact energy and the maximum displacement at middle of walls have a linear growing relation; when impact energy keeps unchanged, change of impact mass affects impact energy distribution in reinforcement and concrete; with decrease in impact mass and increase in impact velocity, concrete local damage increases, energy absorbed by reinforcement decreases, and decrease in energy dissipated by deformation causes displacement to decrease; when axial compression ratio is less than 0.3, axial force is beneficial to walls' anti-impact ability, so axial force can be ignored in the case of small axial compression ratio for wall design with results on safe side. Finally, the design method based on energy was discussed, and the design idea using the static design method of wall plate's plastic hinge lines to resist corresponding impact energy was proposed, the design flow path was summed and recommended values of parameters in formulas were given.
引文
[1] FUJIKAKE K,LI B,SOEUN S.Impact response of reinforced concrete beam and its analytical evaluation[J].Journal of Structural Engineering,2009,135(8):938-950.
    [2] TACHIBANA S,MASUYA H,NAKAMURA S.Performance based design of reinforced concrete beams under impact[J].Natural Hazards & Earth System Sciences,2010,10(6):1069-1078.
    [3] STARR C M,KRAUTHAMMER T.Cladding-structure interaction under impact loads[J].Journal of Structural Engineering,2005,131(8):1178-1185.
    [4] HRYNYK T.Behavior of steel fiber-reinforced concrete slabs under impact load[J].ACI Structural Journal,2014,111(5):1213-1223.
    [5] WANG W,ZHANG D,LU F,et al.Experimental study on scaling the explosion resistance of a one-way square reinforced concrete slab under a close-in blast loading[J].International Journal of Impact Engineering,2012,49(2):158-164.
    [6] 田力,朱聪,王浩,等.碰撞冲击荷载作用下钢筋混凝土柱的动态响应及破坏模式[J].工程力学,2013,30(2):150-155.TIAN Li,ZHU Cong,WANG Hao,et al.Dynamic response and failure modes of RC columns under impact[J].Engineering mechanics,2013,30(2):150-155.
    [7] 丁阳,陈晔,师燕超.室内爆炸超压荷载简化模型[J].工程力学,2015,32(3):119-125.DING Yang,CHEN Ye,SHI Yanchao.Simplified model of overpressure loading caused by internal blast[J].Engineering mechanics,2015,32(3):119-125.
    [8] LI B,NAIR A,KAI Q.Residual axial capacity of reinforced concrete columns with simulated blast damage[J].Journal of Performance of Constructed Facilities,2012,26(26):287-299.
    [9] WU Y,CRAWFORD J E,MAGALLANES J M.Performance of LS-DYNA concrete constitutive models[C]//12th International LS-DYNA Users Conference.Dearborn,MI,2012.
    [10] MURRAY Y D,YEAGER C M.Mixed mode constitutive driver[C]//9th International LS-DYNA Users Conference.Dearborn,MI,2010.
    [11] BISCHOFF P H,PERRY S H.Impact behavior of plain concrete loaded in uniaxial compression[J].Journal of Engineering Mechanics,1995,25(25):763-763.
    [12] 曾翔.冲击和快速加载作用下钢筋混凝土梁柱构件性能试验与数值模拟研究[D].长江:湖南大学,2014.
    [13] 赵德博,易伟建.钢筋混凝土梁抗冲击性能和设计方法研究[J].振动与冲击,2015,34(11):139-145.ZHAO Debo,YI Weijian.Anti-impact behavior and design method for RC beams[J].Journal of Vibration and Shock,2015,34(11):139-145.
    [14] ?ZGüR A,KANTAR E,YILMAZ M C.Low velocity impact behavior of RC slabs with different support types[J].Construction & Building Materials,2015,93:1078-1088.
    [15] KISHI N,MIKAMI H.Empirical formulas for designing reinforced concrete beams under impact loading[J].ACI Structural Journal,2012,109(4):509-519.
    [16] KISHI N,MIKAMI H,MATSUOKA K G,et al.Impact behavior of shear-failure-type RC beams without shear rebar[J].International Journal of Impact Engineering,2002,27(9):955-968.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700