非金属纳米材料表面等离子体共振的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress on Surface Plasmon Resonance of Nonmetallic Nanomaterials
  • 作者:任鹏 ; 杨修春
  • 英文作者:REN Peng;YANG Xiuchun;School of Materials Science and Engineering, Tongji University;Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education;
  • 关键词:非金属纳米材料 ; p型半导体 ; n型半导体 ; 金属型过渡金属化合物 ; 表面等离子体共振
  • 英文关键词:nonmetallic nanomaterial;;p-type semiconductor;;n-type semiconductor;;metal-type transition metal compound;;surface plasmon resonance
  • 中文刊名:GXYB
  • 英文刊名:Journal of the Chinese Ceramic Society
  • 机构:同济大学材料科学与工程学院;先进土木工程材料教育部重点实验室;
  • 出版日期:2018-08-02 19:29
  • 出版单位:硅酸盐学报
  • 年:2018
  • 期:v.46;No.355
  • 基金:上海纳米专项资金项目(11nm0500700)
  • 语种:中文;
  • 页:GXYB201810010
  • 页数:11
  • CN:10
  • ISSN:11-2310/TQ
  • 分类号:69-79
摘要
表面等离子体共振被广泛应用于光催化、纳米集成光子学、光学传感、生物标记、医学成像、太阳能电池以及表面增强Raman光谱等方面。除了金属纳米材料以外,一些非金属纳米材料也具有表面等离子体共振特性,如自掺杂半导体、外掺杂半导体、导电过渡金属化合物等。非金属等离子体共振纳米材料具有来源丰富、制备方便、价格合适、熔点高、耐磨、化学稳定性好、表面等离子体共振特性可调等优点,受到越来越多的关注。本文系统地梳理了文献中关于非金属等离子体共振纳米材料的研究,将其归类为p型半导体、n型半导体和金属型过渡金属化合物,评述了各自的特点及研究进展,并与金属纳米材料的表面等离子体共振效应进行了比较,提出了需注意的研究问题及进一步的研究方向。
        Surface plasmon resonance(SPR) is widely applied in a number of realms such as photocatalysis, integrated nanophotonics, optical sensing, bio-labeling, medical imaging, solar cell and surface-enhanced Raman spectroscopy. Besides metallic nanomaterials, some nonmetallic nanomaterials also possess surface plasmon resonance properties including self-doped semiconductors, extrinsically-doped semiconductors, conductive transition metal oxides and metal nitrides. Nonmetallic SPR nanomaterials have attracted much attention due to their rich resources, convenient preparation, appropriate price, high melting point, good abrasion resistance and chemical stability, and adjustable SPR properties. In this paper, nonmetallic materials were classified as p-type semiconductors, n-type semiconductors and metal-type transition metal compounds, and their characteristics and research progress were discussed via systematically summarizing research work on nonmetallic SPR nanomaterials in the literatures. The main differences and similarities of SPR properties between nonmetallic and metallic nanomaterials were also compared. In addition, we analyzed the existing problems and gave the further research directions.
引文
[1]ASAHIR,MORIKAWAT,OHWAKIT,etal.Visible-light photocatalysisinnitrogen-dopedtitaniumoxides[J].Science,2001,293(5528):269-271.
    [2]ATTIAYA,BUCETAD,BLANCO-VARELAC,etal.Structure-directingandhigh-efficiencyphotocatalytichydrogen production by Ag clusters[J]. J Am Chem Soc, 2014, 136(4):1182-1185.
    [3]FAKHOURIH,AREFI-KHONSARIF,JAISWALAK,etal.Enhanced visible light photoactivity and charge separation in TiO2/TiN bilayer thin films[J]. Appl Catal A, 2015, 492:83-92.
    [4]LIC,YANGW,LIUL,etal.InsitugrowthofTi O2onTiN nanoparticlesfornon-noble-metalplasmonicphotocatalysis[J].RSC Adv, 2016, 6(76):72659-72669.
    [5]PARKDG,CHATH,LIMKY,etal.Robustternarymetalgate electrodes for dual gate CMOS devices[C]//Electron Devices Meeting,Washington DC, USA, 2001:30.6.1-30.6.4.
    [6]ENGHETAN.Circuitswithlightatnanoscales:opticalnanocircuits inspired by metamaterials[J]. Science, 2007, 317(5845):1698-1702.
    [7]HAESAJ,VAN-DUYNERP.Ananoscaleopticalbiosensor:sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles[J]. J Am Chem Soc, 2002, 124(35):10596-10604.
    [8]LEEKS,EL-SAYEDMA.Goldandsilver nanoparticlesin sensing and imaging:sensitivity of plasmon response to size, shape, and metal composition[J]. J Phys Chem B, 2006, 110(39):19220-19225.
    [9]GUDURUSSK,KRIEGELI,RAMPONIR,etal.Plasmonic heavily-dopedsemiconductornanocrystaldielectrics:makingstatic photonic crystals dynamic[J]. J Phys Chem C, 2015, 119(5):2775-2782.
    [10]HALLD.Useofopticalbiosensorsforthestudyofmechanistically concerted surface adsorption processes[J]. Anal Biochem, 2001, 288(2):109-125.
    [11]SCHUCKP.Useofsurfaceplasmonresonancetoprobethe equilibriumanddynamicaspectsofinteractionsbetweenbiological macromolecules[J]. Annu Rev, 1997, 26:541-566.
    [12]SOKOLOVK,FOLLENM,AARONJ,etal.Real-timevitaloptical imagingofprecancerusinganti-epidermalgrowthfactorreceptor antibodiesconjugatedtogoldnanoparticles[J].CancerRes,2003,63(9):1999-2004.
    [13]EL-SAYEDIH,HUANGX,EL-SAYEDMA.Surfaceplasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics:applications in oral cancer[J].Nano Lett, 2005, 5(5):829-834.
    [14]GIANNINIV,FERNáNDEZ-DOMíNGUEZAI,HECKSC,etal.Plasmonic nanoantennas:Fundamentals and their use in controlling the radiativepropertiesofnanoemitters[J].ChemRev,2011,111(6):3888-3912.
    [15]LINDQUISTNC,NAGPALP,MCPEAKKM,etal.Engineering metallic nanostructures for plasmonics and nanophotonics[J]. Rep Prog Phys, 2012, 75(3):036501.
    [16]AMENDOLAV,SCARAMUZZAS,AGNOLIS,etal.Strong dependenceofsurfaceplasmonresonanceandsurfaceenhanced RamanscatteringonthecompositionofAu-Fenanoalloys[J].Nanoscale, 2014, 6(3):1423-1433.
    [17]XIAOG,MANS,SHIW,etal.Surfaceplasmonresonanceand surface-enhancedRamanscatteringactivityofSiO2-Aucore-cap nanostructure arrays[J]. Appl Phys A, 2014, 117(4):1907-1914.
    [18]YANG X, HOU J, LIU Y, et al. OPAA template-directed synthesis and optical properties of metal nanocrystals[J]. Nanoscale Res Lett, 2013, 8:1-8.
    [19]YANGX,LIL,HUANGM,etal.InsitusynthesisofAg-Cu bimetallicnanoparticlesinsilicateglassbyatwo-stepion-exchange route[J]. J Non-Cryst Solids, 2011, 357(11/13):2306-2308.
    [20]YANGX,LIW,LIZ,etal.DepthprofilesofAgnanoparticlesin silicate glass[J]. Appl Phys A, 2008, 90(3):465-467.
    [21]杨修春.离子交换和热处理对贵金属掺杂硅酸盐玻璃光致发光的影响[J].无机材料学报, 2016, 31(10):1039-1045.YANG Xiuchun. J Inorg Mater(in Chinese), 2016, 31(10):1039-1045.
    [22]杨修春,刘会欣,李玲玲,等.影响贵金属纳米颗粒表面等离子体共振因素评述[J].功能材料, 2010, 41(2):341-345.YANG X, LIU X, LI L, et al. J Funct Mater(in Chinese), 2010, 41(2):341-345.
    [23]LIUX,SWIHARTMT.Heavily-dopedcolloidalsemiconductorand metaloxidenanocrystals:anemergingnewclassofplasmonic nanomaterials[J]. Chem Soc Rev, 2014, 43(11):3908-3920.
    [24]WILLIAMS C R, ANDREWS S R, MAIER S A, et al. Highly confined guidingofterahertzsurfaceplasmonpolaritonsonstructuredmetal surfaces[J]. Nat Photonics, 2008, 2(3):175-179.
    [25]KUNDU J, LE F, NORDLANDER P, et al. Surface enhanced infrared absorption(SEIRA)spectroscopy on nanoshell aggregate substrates[J].Chem Phys Lett, 2008, 452(1/3):115-119.
    [26]ALVAREZMM,KHOURYJT,SCHAAFFTG,etal.Optical absorptionspectraofnanocrystalgoldmolecules[J].JPhysChemB,1997, 101(19):3706-3712.
    [27]BOLTASSEVAA,ATWATER,HA.Low-lossplasmonic metamaterials[J]. Science, 2011, 331(6015):290-291.
    [28]GARBA E J D, JACOBS R L. The electronic structure of Cu2-x Se[J].Physica B+C, 1986, 138(3):253-260.
    [29]KRIEGEL I, JIANG C, RODRIGUEZ-FERNáNDEZ J, et al. Tuning theexcitonicandplasmonicpropertiesofcopperchalcogenide nanocrystals[J] J Am Chem Soc, 2012, 134(3):1583-1590.
    [30]LIW,ZAMANIR,RIVERAGILP,etal.CuTenanocrystals:shape andsizecontrol,plasmonicproperties,anduseasSERSprobesand photothermal agents[J]. J Am Chem Soc, 2013, 135(19):7098-7101.
    [31]HSU S W, ON K, TAO A R. Localized surface plasmon resonances of anisotropicsemiconductornanocrystals[J].JAmChemSoc,2011,133(47):19072-19075.
    [32]DORFS D, HARTLING T, MISZTA K, et al. Reversible tunability of thenear-infraredvalencebandplasmonresonanceinCu2-x Se nanocrystals[J]. J Am Chem Soc, 2011, 133(29):11175-11180.
    [33]LLORENTEVB,DZHAGANVM,GAPONIKN,etal.Electrochemicaltuningoflocalizedsurfaceplasmonresonancein copperchalcogenidenanocrystals[J].JPhysChemC,2017,121(33):18244-18253.
    [34]LIUX,WANGXL,ZHOUB,etal.Size-controlledsynthesisof Cu2-x E(E=S,Se)nanocrystalswithstrongtunablenear-infrared localizedsurfaceplasmonresonanceandhighconductivityinthin films[J]. Adv Funct Mater, 2013, 23(10):1256-1264.
    [35]LIU X, LEE C, LAW W C, et al. Au-Cu2-x Se heterodimer nanoparticles withbroadlocalizedsurfaceplasmonresonanceascontrastagentsfor deep tissue imaging[J]. Nano Lett, 2013, 13(9):4333-4339.
    [36]ZHU Dewei, LIU Maixian, LIU Xin, et al. Au-Cu2-x Se heterogeneous nanocrystals for efficient photothermal heating for cancer therapy[J]. J Mater Chem B, 2017, 5(25):4934-4942.
    [37]MANTHIRAMK,ALIVISATOSAP.Tunablelocalizedsurface plasmon resonances in tungsten oxide nanocrystals[J]. J Am Chem Soc,2012, 134(9):3995-3998.
    [38]WEN L,CHEN L,ZHENG S,et al. Ultrasmall biocompatible WO3-xnanodotsformulti-modalityimagingandcombinedtherapyof cancers[J]. Adv Mater, 2016, 28(25):5072-5079.
    [39]HUANGQ,HUS,ZHUANGJ,etal.MoO3-x-basedhybridswith tunablelocalizedsurfaceplasmonresonances:chemicaloxidation drivingtransformationfromultrathinnanosheetstonanotubes[J].Chem Eur J, 2012, 18(48):15283-15287.
    [40]CHENG H, QIAN X, KUWAHARA Y, et al. A plasmonic molybdenum oxide hybrid with reversible tunability for visible-light-enhanced catalytic reactions[J]. Adv Mater, 2015, 27(31):4616-4621.
    [41]ROWEDJ,JEONGJS,MKHOYANKA,etal.Phosphorus-doped silicon nanocrystals exhibiting mid-infrared localized surface plasmon resonance[J]. Nano Lett, 2013, 13(3):1317-1322.
    [42]KANEHARA M, KOIKE H, YOSHINAGA T, et al. Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region[J]. J AmChem Soc, 2009, 131(49):17736-17737.
    [43]GARCIAG,BUONSANTIR,RUNNERSTROMEL,etal.Dynamicallymodulatingthesurfaceplasmonresonanceofdoped semiconductor nanocrystals[J]. Nano Lett, 2011, 11(10):4415-4420.
    [44]GU Y, ZHU Z, SONG J, et al. Triangle-, tripod-, and tetrapod-branched ITOnanocrystalsforanisotropicinfraredplasmonics[J].Nanoscale,2017, 9(48):19374-19383.
    [45]BUONSANTIR,LLORDESA,ALONIS,etal.Tunableinfrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals[J]. Nano Lett, 2011, 11(11):4706-4710.
    [46]ZUM FELDE U, HAASE M, WELLER H. Electrochromism of highly dopednanocrystallineSnO2:Sb[J].JPhysChemB,2000,104(40):9388-9395.
    [47]LEE H Y, CAI Y, BI S, et al. A dual-responsive nanocomposite toward climate-adaptablesolarmodulationforenergy-savingsmart windows[J]. ACS Appl Mater Interface, 2017, 9(7):6054-6063.
    [48]GORDONTR,PAIKT,KLEINDR,etal.Shape-dependent plasmonic response and directed self-assembly in a new semiconductor buildingblock,indium-dopedcadmiumoxide(ICO)[J].NanoLett,2013, 13(6):2857-2863.
    [49]GORDONTR,CARGNELLOM,PAIKT,etal.Nonaqueous synthesisofTiO2nanocrystalsusingTiF4toengineermorphology,oxygenvacancyconcentration,andphotocatalyticactivity[J].JAm Chem Soc, 2012, 134(15):6751-6761.
    [50]DETRIZIOL,BUONSANTIR,SCHIMPFAM,etal.Nb-doped colloidal TiO2 nanocrystals with tunable infrared absorption[J]. Chem Mater, 2013, 25(16):3383-3390.
    [51]MORIN F J. Oxides which show a metal-to-insulator transition at the neel temperature[J]. Phys Rev Lett, 1959, 3(1):34-36.
    [52]RINIM,CAVALLERIA,SCHOENLEINRW,etal.Photoinduced phasetransitioninVO2nanocrystals:ultrafastcontrolof surface-plasmon resonance[J]. Opt Lett, 2005, 30(5):558-560.
    [53]MOOT T, PALINC, MITRAN S, etal. Designing plasmon-enhanced thermochromicfilmsusingavanadiumdioxidenanoparticle elastomeric composite[J]. Adv Opt Mater, 2016, 4(4):578-583.
    [54]BISWASK,RAOCNR.MetallicRe O3nanoparticles[J].JPhys Chem B, 2006, 110(2):842-845.
    [55]QUINTENM.Thecoloroffinelydispersednanoparticles[J].Appl Phys B, 2001, 73(4):317-326.
    [56]REINHOLDTA,PECENKAR,PINCHUKA,etal.Structural,compositional,opticalandcolorimetriccharacterizationof TiN-nanoparticles[J]. Eur Phys J D, 2004, 31(1):69-76.
    [57]ISHIIS,SUGAVANESHWARRP,NAGAOT.Titaniumnitride nanoparticlesasplasmonicsolarheattransducers[J].JPhysChemC,2016, 120(4):2343-2348.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700