腐植酸/石墨烯复合材料的制备及其电化学性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and electrochemical performance of humic acid/graphene composites
  • 作者:常琦敏 ; 李颖 ; 白利忠
  • 英文作者:CHANG Qimin;LI Ying;BAI Lizhong;School of Environmental and Safety Engineering,North University of China;School of Materials Science and Engineering, North University of China;
  • 关键词:腐植酸 ; 石墨烯 ; 超级电容器 ; 电化学性能
  • 英文关键词:humic acid;;graphene;;supercapacitor;;electrochemical performance
  • 中文刊名:GNCL
  • 英文刊名:Journal of Functional Materials
  • 机构:中北大学环境与安全工程学院;中北大学材料科学与工程学院;
  • 出版日期:2019-05-30
  • 出版单位:功能材料
  • 年:2019
  • 期:v.50;No.428
  • 基金:国家自然科学基金资助项目(21507115);; 山西省自然科学基金资助项目(201701D221231);; 中北大学青年科学基金资助项目(XJJ2016010)
  • 语种:中文;
  • 页:GNCL201905035
  • 页数:5
  • CN:05
  • ISSN:50-1099/TH
  • 分类号:210-214
摘要
采用从褐煤中提取的腐植酸和天然石墨制得的氧化石墨烯为原料,通过水合肼加热还原法合成腐植酸/石墨烯复合材料。利用XRD、Raman、SEM和电化学测试对复合材料的形貌、微观结构和电化学性能进行表征。结果表明腐植酸均匀分散在石墨烯片层间形成夹心多孔骨架结构,可缩短电解质传播和运输路径。复合材料HRGO-0.1在电流密度为50 mA/g时表现出高的比电容(185 F/g),低的电阻率,良好的电容倍率。
        The humic acid/graphene composite material was produced by heating reduction method with hydrazine hydrate using humic acid extracted from lignite and graphene oxide prepared from natural graphite. The morphology and microstructure of the composites were characterized by X-ray diffraction(XRD), Raman spectroscopy(Raman), scanning electron microscopy(SEM) and electrochemical tests. The results show that the humic acid was uniformly dispersed in the graphene sheet to form a sandwich porous framework structure, which could shorten the path of electrolyte propagation and transportation. When the current density was 50 mA/g, the composite material HRGO-0.1 exhibited high specific capacitance(185 F/g) as an electrode material with low resistivity and a good capacitance ratio.
引文
[1] Huang G X,Kang W W,Xing B L,et al.Oxygen-rich and hierarchical porous carbons prepared from coal based humic acid for supercapacitor electrodes[J].Fuel Processing Technology,2016,142:1-5.
    [2] Powell C,Beall G W.Graphene oxide and graphene from low grade coal:synthesis,characterization and applications[J].Current Opinion in Colloid and Interface Science,2015,20(5):362-366.
    [3] Solomon S,Rosenlof K H,Portmann R W,et al.Contributions of stratospheric water vapor to decadal changes in the rate of global warming[J].Science,2010,327(5970):1219-1223.
    [4] Huang G X,Liu Q R,Kang W W,et al.Potassium humate based reduced graphite oxide materials for supercapacitor applications[J].Electrochimica Acta,2016,196:450-456.
    [5] Xing B L,Yuan R F,Zhang C X,et al.Facile synthesis of graphene nanosheets from humic acid for supercapacitors[J].Fuel Processing Technology,2017,165:112-122.
    [6] Duraia E M S,Niu S,Beall G W,et al.Humic acid-derived graphene-SnO2 nanocomposites for high capacity lithium-ion battery anodes[J].Journal of Materials Science:Materials in Electronics,2018,29(10):8456-8464.
    [7] Zhou X Y,Wang B,Lan T,et al.Chirality of graphene oxide-humic acid sandwich complex induced by a twisted,long-range-ordered nanostructure[J].The Journal of Physical Chemistry C,2016,120(45):25789-25795.
    [8] Liu Y Z,Li Y F,Su F Y,et al.Easy one-step synthesis of N-doped graphene for super capactiors[J].Energy Storage Materials,2016,2:69-75.
    [9] Wang H W,Wu H Y,Chang Y Q,et al.Tert-butylhydroquinone-decorated graphene nanosheets and their enhanced capacitive behaviors[J].Chinese Science Bulletin,2011,56(20):2092-2097.
    [10] Jin Y H,Jia M Q,Zhang M,et al.Preparation of stable aqueous dispersion of graphene nanosheets and their electrochemical capacitive properties[J].Applied Surface Science,2013,264:787-793.
    [11] Shulga Y M,Baskakov S A,Baskakova Y V,et al.Preparation of graphene oxide-humic acid composite-based ink for printing thin film electrodes for micro-supercapacitors[J].Journal of Alloys and Compounds,2018,730:88-95.
    [12] Chen Y,Zhang X,Zheng D,et al.High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes[J].Carbon,2011,49:573.
    [13] Frackowiak E.Carbon materials for supercapacitor application[J].Physical Chemistry Chemical Physics,2007,9(15):1774-1785.
    [14] Zhang Y,Feng H,Wu X B,et al.Progress of electrochemical capacitor electrode materials:a review[J].International Journal of Hydrogen Energy,2009,34(11):4889-4899.
    [15] Mori T,Sharma A,Hegmann T.Significant enhancement of the chiral correlation length in nematic liquid crystals by gold nanoparticle surfaces featuring axially chiral binaphthyl ligands[J].ACS Nano,2016,10:1552-1564.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700