碳包覆改性二氧化锰电极材料的制备和性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and Properties of Carbon Coated Manganese Dioxide Electrode Materials
  • 作者:潘双 ; 庄雪 ; 王冰 ; 唐立丹 ; 刘亮 ; 齐锦刚
  • 英文作者:PAN Shuang;ZHUANG Xue;WANG Bing;TANG Lidan;LIU Liang;QI Jingang;School of Materials Science and Engineering,Liaoning of Technology;
  • 关键词:复合材料 ; 碳包覆二氧化锰 ; 电脉冲辅助氧化还原法/液相烧结法 ; 机理分析
  • 英文关键词:composite material;;carbon coated manganese dioxide;;electric pulse assisted redox/liquid sintering method;;electrochemical performance;;mechanism analysis
  • 中文刊名:CYJB
  • 英文刊名:Chinese Journal of Materials Research
  • 机构:辽宁工业大学材料科学与工程学院;
  • 出版日期:2019-07-25
  • 出版单位:材料研究学报
  • 年:2019
  • 期:v.33
  • 基金:辽宁自然科学基金(2015020215);; 辽宁省高校优秀人才项目(LJQ2015050);; 辽宁教育厅一般项目(L2035236)~~
  • 语种:中文;
  • 页:CYJB201907007
  • 页数:7
  • CN:07
  • ISSN:21-1328/TG
  • 分类号:52-58
摘要
先以高锰酸钾(KMnO_4)和硫酸锰(MnSO_4·H_2O)为原料用电脉冲辅助氧化还原法制备二氧化锰(MnO_2)粉末,再以葡萄糖(C_6H_(12)O_6)为碳源用液相烧结法制备出不同碳包覆量的MnO_2/C复合材料,研究了碳包覆量对材料的形貌、结构和电化学性能的影响。结果表明,碳的加入使MnO_2晶型由γ型转变为α型,葡萄糖加热分解后生成无定型的碳覆着在二氧化锰颗粒的表面,抑制了晶粒生长而使晶粒细化。充放电测试结果表明,在葡萄糖浓度为1.5 g/L、电流密度为2 A·g-1条件下二氧化锰的比电容为722.2 F·g~(-1)。与包覆二氧化锰前比较,包覆后比电容提高了64.6%。经过4000圈充放电循环后电容保持率为74.72%,表现出良好的电容特性和循环性能。
        Manganese dioxide powders were firstly prepared via electric pulse assisted redox method with KMnO_4 and MnSO_4 as raw material, then MnO_2/C composite materials coated with different amounts of carbon were fabricated via liquid phase sintering with glucose as a carbon source. The effect of amount of coated carbon on the morphology, structure and electrochemical properties of the MnO_2/C materials were investigated. Results show that the coated carbon could induce the transformation of crystallographic structure of MnO2 from γ-type into α-type. Under heating conditions glucose decomposed and coated on the surface of MnO_2 particles, which could inhibit the grain growth and thus refine grains. When the preparation with the process parameters: glucose concentration was 1.5 g/L and the current density was 2 A·g~(-1), the prepared MnO_2/C material presented the specific capacitance of MnO_2 of 722.2 F·g~(-1), in other words, the carbon coating could increase the specific capacitance by 80%, in comparison with that of the blank ones. Furthermore, after 4000 charge-discharge cycles, the capacitance retention rate could still maintain 74.72%, displayed good electrochemical performance and cycling performance.
引文
[1] Xing B L, Huang G, Zhan L J, et al. Research status and prospects of supercapacitor electrode materials[J]. Matererial News, 2012,26(10):21(刑宝林,黄光,谌伦建等.超级电容器电极材料的研究现状与展望[J].材料导报, 2012, 26(10):21)
    [2] Peng X, Peng L, Wu C, et al. Two dimensional nanomaterials for flexible supercapacitors[J]. Chemical Society Reviews, 2014, 45(26):3303
    [3] M. A. Borysiewicz, M. Ekielski, Z. Ogorza?ek, et al. Highly transparent supercapacitors based on ZnO/MnO2nanostructures[J]. Nanoscale, 2017, 9(22):7577
    [4] Xia X H, Chao D L, Zhang Y Q, et al. Generic synthesis of carbon nanotube branches on metal oxide arrays exhibiting stable highrate and long-cycle sodium-ion storage[J]. Small, 2016, 12(22):3048
    [5] Cao J, Li X, Wang Y, et al. Materials and fabrication of electrode scaffolds for deposition of MnO2and their true performance in supercapacitors[J]. Power Source, 2015, 293(20):657
    [6] Dubal S V, Patil G. Polyaniline-polypyrrole nanograined composite via electrostatic adsorption for high performance electrochemical supercapacitors[J]. Journal of Alloys and Compounds, 2013,552(5):240
    [7] Kazemi S, Kiani M, Mohamadi R, et al. Metal-polyaniline nanofibre composite for supercapacitor applications[J]. Bulletin of Materials Science, 2014, 37(5):1001
    [8] Wei W, Cui X, Chen W, et al. Manganese oxide-based materials as electrochemical supercapacitor electrodes[J]. Chemical Society Reviews, 2011, 40(3):1697
    [9] Zhao Y, Ran W, He J, et al. High-performance asymmetric supercapacitors based on multilayer MnO2/graphene oxide nanoflakes and hierarchical porous carbon with enhanced cycling stability[J].Small, 2015, 11(11):1310
    [10] Huang M, Mi R, Liu H, et al. Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binderfree supercapacitor electrodes[J]. Power Source, 2014, 269(10):760
    [11] Yu Z, Duong B, Abbitt D, et al. Highly ordered MnO2nanopillars for enhanced supercapacitor performance[J]. Advanced Materials,2013, 25(24):3302
    [12] Li. S, Qi. L, Lu. L, et al. Facile preparation and performance of mesoporous manganese oxide for supercapacitors utilizing neutralaqueous electrolytes[J]. RSC Advanced, 2012, 2(8):3298
    [13] Jiang J, Li Y, Liu J, et al. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage[J]. Advanced Materials, 2012, 24(38):5166
    [14] Machefaux E, Verbaere A, Guyomard D. Preparation of nanowires of M substituted manganese dioxides(M=Al, Co, Ni)by the electrochemical hydrothermal method[J]. Journal of Physics and Chemistry of Solids, 2013, 67(5-6):1315
    [15] Chun K Y, Ryu C W, Kim K B. Onset mechanism of Jahn-Teller distortion in 4V LiMn2O4and its suppression by LiM0.05Mn1.95O4(M=Co, Ni)coating[J]. Journal of the Electrochemical Society,2005, 152(4):A791
    [16] Sun M, Tie J, Cheng G, et al. In situ growth of burl-like nickel cobalt sulfide on carbon fibers as high-performance supercapacitors[J].Materials Chemical A, 2015, 3(1):1730
    [17] Su X, Yu L, Cheng G, et al. High-performanceα-MnO2nanowire electrode for supercapacitor[J]. Applied Energy, 2015, 153(1):94
    [18] Yang M Y, Ni P, Li Y, et al. Synthesis and electrochemical performance ofβ-MnO2with semitubular morphology[J]. Materials Chemical Physical, 2010, 124(1):155
    [19] Kim Y J, Yang C M, Park K C, et al. Edge-enriched, porous carbon-based, high energy density supercapacitors for hybrid electric vehicles[J]. Chemical Sustainable Chemical, 2012, 5(3):535
    [20] Cao F F, Wu X L, Xin S, et al. Facile synthesis of mesoporous TiO2-C nanosphere as an improved anode material for superior high rate 1.5V rechargeable Li ion batteries containing LiFePO4-C cathode[J]. Physical Chemistry C, 2010, 114(22):10308
    [21] Liu Y, Ai C C, Hu Y, et al. Research progress of supercapacitor carbon-coated metal oxide electrode materials[J]. Chemical Lindustry and Engineering Progress, 2013, 32(2):1849(刘洋,艾常春,胡意等.碳包覆金属氧化物作为超级电容器电极材料的研究进展[J].化工进展, 2013, 32(2):1849)
    [22] YANG J, WANG B F, WANG K, et al. Si/C composites for high capacity lithium storage materials[J]. Electrochemical Solid-State Letterr, 2003, 6(8):A154
    [23] Pan S, Wang B, Ma Z J, et al. Preparation and electrochemical performance of Al-doped manganese dioxide nanowires[J]. Piezoelectrics&Acoustooptics, 2019, 41(01):72(潘双,王冰,马泽军等.铝掺杂二氧化锰纳米线的制备及其电化学性能[J].压电与声光, 2019, 41(01):72)
    [24] Jin E M, Lim J G, Jeong S M. Facile synthesis of graphenewrapped CNT-MnO2nanocomposites for asymmetric electrochemical capacitors[J]. Journal of Industrial and Engineering Chemistry, 2017, 54(25):421
    [25] Li J, Ma J, Gao Y, et al. Research on solidification structure refinement of pure aluminum by electric current pulse with parallel electrodes[J]. Materials Science and Engineering A, 2008, 490(1):452
    [26] Zhou X. In vitro degradation characteristic of carbon fiber reinforced polylactide(C/PLA)composite under pulsed electoimagnetic field[D]. Jinzhou:Liaoning University of Technology, 2016(周想.脉冲电磁场作用下碳纤维增强聚乳酸(C/PLA)复合材料的降解特性[D].锦州:辽宁工业大学, 2016)
    [27] Zhang D. Effects and Mechanism of LaxSr1-xCryNi1-yO3Powders'Exsolution Characteristics under Pulsed Current[D]. Jinzhou:Liaoning University of Technology, 2018(张迪.脉冲电流对LaxSr1-xCryNi1-yO3溶出特性的影响及其作用机理[D].锦州:辽宁工业大学, 2018)
    [28] Fang L. The Preparation and Eelectrochemical Performance of MnO2Assisted with Pulse Electromagnetic Field[D]. Jinzhou:Liaoning University of Technology, 2018(方琳.脉冲电磁场辅助制备二氧化锰及其电化学性能研究[D].锦州:辽宁工业大学, 2018)
    [29] Liu K Y, Zhang Y, Zhang W, et al. Charge-discharge process of MnO2supercapacitor[J]. Transactions of Nonfcrrous Metals Society of China, 2007, 17(3):649
    [30] Zhang X, Sun X, Zhang H, et al. Comparative performance of birnessite-type MnO2nanoplates and octahedral molecular sieve(OMS-5)nanobelts of manganese dioxide as electrode materials for supercapacitor application[J]. Electrochimica Acta, 2014, 132(03):315

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700