毫秒脉冲等离子体激励改善飞翼的气动性能实验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experiment for improving aerodynamic performances of a flying wing by millisecond pulsed plasma actuation
  • 作者:马杰 ; 梁华 ; 吴云 ; 韩孟虎 ; 魏彪 ; 赵光银
  • 英文作者:MA Jie;LIANG Hua;WU Yun;HAN Meng-hu;WEI Biao;ZHAO Guang-yin;Science and Technology on Plasma Dynamics Laboratory,Aeronautics and Astronautics Engineering College,Air Force Engineering University;
  • 关键词:等离子体流动控制 ; 介质阻挡放电等离子体激励 ; 毫秒脉冲 ; 飞翼 ; 流动分离
  • 英文关键词:plasma flow control;;dielectric barrier discharge plasma actuation;;millisecond pulsed;;flying wing;;flow separation
  • 中文刊名:HKDI
  • 英文刊名:Journal of Aerospace Power
  • 机构:空军工程大学航空航天工程学院等离子体动力学重点实验室;
  • 出版日期:2016-07-20 11:06
  • 出版单位:航空动力学报
  • 年:2016
  • 期:v.31
  • 基金:国家自然科学基金(51207169,51276197);; 陕西省自然科学基金(2015JM1001);; 中国博士后科学基金(2014M562446)
  • 语种:中文;
  • 页:HKDI201608007
  • 页数:7
  • CN:08
  • ISSN:11-2297/V
  • 分类号:58-64
摘要
在来流速度为30m/s时,进行了毫秒脉冲介质阻挡放电等离子体激励改善飞翼气动性能的风洞实验.等离子体激励器布置在飞翼前缘,峰峰值电压为9.5kV时,放电的脉冲能量在0.1mJ/cm量级.通过六分量测力天平测力研究了脉冲激励频率和占空比对升/阻力系数、升阻比和俯仰力矩系数的作用效果.结果表明:等离子体激励可以有效改善飞翼大攻角气动特性;在最佳无量纲脉冲激励频率F+≈1时,临界失速迎角由14°提高到17°,最大升力系数提高10%;占空比对流动控制效果影响较大,减小占空比可以降低能耗,实验中最佳占空比为5%;俯仰力矩系数的变化表明施加等离子体激励改善了飞翼纵向静稳定性.
        The experiment for improving aerodynamic performances of a flying wing by millisecond pulsed dielectric barrier discharge(DBD)plasma actuation was performed in a wind tunnel at incoming speed of 30m/s.Plasma actuator was planted along the leading edge of the flying wings;the discharge energy of each pulse was at the order of 0.1mJ/cm when the peak-to-peak voltage was 9.5kV.The effect of actuation frequency and duty cycle on the aerodynamic performances,such as lift/drag coefficient,lift/drag ratio and pitch moment coefficient,was investigated through force measurement by a six-component balance.The results show that the aerodynamic performances of the flying wing at high angles of attack can be improved with plasma actuation.When the optimum non-dimensional actuation frequency F+≈1,the stall angle of attack increases from 14°to 17°and the maximum lift coefficient increases by 10%.The duty cycle plays an important role in flow control efficiency.The best duty cycle is 5%in the current investigation,which can reduce the power consumption tremendously.Meanwhile,the changes of pitch moment coefficient indicate that longitudinal static stability of flying wing is improved by plasma actuation.
引文
[1]Bolsunovsky A L,Buzoverya N P,Gurevich B I,et al.Flying wing:problems and decisions[J].Aircraft Design,2001,4(4):193-219.
    [2]Sergio E.Static and dynamic analysis of an unconventional plane:flying wing[R].AIAA-2001-4010,2001.
    [3]Vladimir G D,Leonid M S,Vladimir E D,et al.The flyingwing concept-chances and risks[R].AIAA-2003-2887,2003.
    [4]Kerstin C H,Andreas S,Martin R.Numerical investigation of the aerodynamic properties of a flying wing configuration[R].AIAA-2006-3495,2006.
    [5]Samimy M,Debiasi M,Caraballo E.Closed-loop active flow control:a collaborative approach[R].AIAA-2003-0058,2003.
    [6]Lord W K,MacMartin D G,Tillman T G.Flow control opportunities in gas turbine engines[R].AIAA-2000-2234,2000.
    [7]吴云,李应红.等离子体流动控制研究进展与展望[J].航空学报,2015,36(2):381-405.WU Yun,LI Yinghong.Progress and outlook of plasma flow control[J].Acta Aeronautica et Astronautica Sinica,2015,36(2):381-405.(in Chinese)
    [8]Corke T,Post M,Orlov D.Single dielectric barrier discharge plasma enhanced aerodynamics:physics,modeling and applications[J].Experiments in Fluids,2009,46(1):1-26.
    [9]李应红,梁华,马清源,等.脉冲等离子体激励抑制翼型吸力面流动分离的实验[J].航空学报,2008,29(6):102-104.LI Yinghong,LIANG Hua,MA Qingyuan,et al.Experimental investigation on airfoil suction side flow separation by pulse plasma aerodynamic actuation[J].Acta Aeronautica et Astronautica Sinica,2008,26(6):102-104.(in Chinese)
    [10]梁华,李应红,宋慧敏,等.多相等离子体激励抑制翼型失速分离的实验[J].航空动力学报,2011,26(4):867-873.LIANG Hua,LI Yinghong,SONG Huimin,et al.Experimental investigation on airfoil stall separation suppression by multiphase plasma aerodynamic actuation[J].Journal of Aerospace Power,2011,26(4):867-873.(in Chinese)
    [11]李应红,吴云,张朴,等.等离子体激励抑制翼型失速分离的实验研究[J].空气动力学学报,2008,26(3):372-377.LI Yinghong,WU Yun,ZHANG Pu,et al.Experimental investigation on airfoil stall separation suppression by plasma actuation[J].Acta Aerodynamica Sinica,2008,26(3):372-377.(in Chinese)
    [12]徐长群,杨波,孟宣市,等.低速翼型分离流动的等离子体主动控制研究[J].航空工程进展,2012,3(3):289-293.XU Changqun,YANG Bo,MENG Xuanshi,et al.Study on the plasma active control in the low-speed airfoil separation flow[J].Advances in Aeronautical Science and Engineeing,2012,3(3):289-293.(in Chinese)
    [13]Kelley C L,Bowles P,Cooney J,et al.High Mach number leading-edge flow separation control using AC DBD plasma actuators[R].AIAA-2012-0906,2012.
    [14]Maslov A,Sidorenko A A,Zanin B Y,et al.Plasma control of flow separation on swept wing at high angles of attack[R].AIAA-2008-540,2008.
    [15]Patel M P,Ng T T,Vasudevan S,et al.Plasma actuators for hingeless aerodynamic control of an unmanned air vehicle[J].Journal of Aircraft,2007,44(4):1264-1274.
    [16]赵光银,梁华,李应红,等.纳秒脉冲等离子体激励控制小后掠三角翼低速绕流的实验研究[J].航空学报,2015,36(7):2125-2132.ZHAO Guangyin,LIANG Hua,LI Yinghong,et al.Experimental study of flow control on a low swept delta wing using pulsed nanosecond plasma actuation[J].Acta Aeronautica et Astronautica Sinica,2015,36(7):2125-2132.(in Chinese)
    [17]Greenblatt D,Kastanin Y,Nayeri C N,et al.Delta wing flow control using dielectric barrier discharge actuator[R].AIAA-2007-4277,2007.
    [18]WU Yun,LI Yinghong,JIA Min,et al.Experiment investigation into characteristics of plasma aerodynamic actuation generated by dielectric barrier discharge[J].Chinese Journal of Aeronautics,2010,23(1):39-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700