大液滴撞击结冰传热过程及介质阻挡放电除冰实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Unsteady heat transfer of large droplet icing and deicing process using dielectric barrier discharge
  • 作者:陈杰 ; 梁华 ; 贾敏 ; 魏彪 ; 苏志
  • 英文作者:CHEN Jie;LIANG Hua;JIA Min;WEI Biao;SU Zhi;Science and Technology on Plasma Dynamics Laboratory, Air Force Engineering University;
  • 关键词:相变 ; 冷壁面 ; 传热 ; 纳秒脉冲 ; 介质阻挡放电
  • 英文关键词:phase change;;cold surface;;heat transfer;;nanosecond pulse;;dielectric barrier discharge
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:空军工程大学等离子体动力学重点实验室;
  • 出版日期:2018-06-20 08:37
  • 出版单位:化工学报
  • 年:2018
  • 期:v.69
  • 基金:国家自然科学基金项目(51407179);; 中国博士后科学基金项目(2014M562446)~~
  • 语种:中文;
  • 页:HGSZ201809008
  • 页数:10
  • CN:09
  • ISSN:11-1946/TQ
  • 分类号:69-78
摘要
对大液滴撞击过冷壁面结冰的传热和相变过程进行了实验研究,采用高速成像技术与红外测温成像技术对液滴撞击不同温度过冷壁面时的动态过程进行拍摄记录。另外提出一种新的除冰方式,利用高频纳秒脉冲介质阻挡放电等离子体激励器进行了除冰的实验验证,并进行了热力学分析。实验结果表明:壁面温度的变化对液滴铺展过程影响较小,最大铺展系数几乎不变,但对液滴收缩与振荡过程以及最终结冰冰形有较大的影响;结冰从液滴底层开始,壁面温度越低,液滴与过冷壁面温差越大,底层液滴结冰更快,而上层液膜经过回缩、振荡之后,液膜厚度更薄,结冰相变所需时间也更短;利用高频纳秒脉冲介质阻挡放电除冰效果显著,其放电区域作用相当于是一个"热源",且根据其作用方式的不同,除冰过程可分为两个阶段。
        An investigation was conducted to quantify the unsteady heat transfer and phase changing process of a large droplet impinging onto cold surface under different surface temperature, through high speed imaging and infrared thermal imaging technology. In addition, a new method of deicing was presented. The deicing experiment using high-frequency nanosecond pulse dielectric barrier discharge plasma actuator was conducted, and thermodynamic analysis was also carried out. The results reveal that cold surface temperature has little effect on the spreading process, but has obvious effect on receding process,oscillation process and final ice shape. The icing starts at the bottom of the droplet, with the decrease of the wall surface temperature, the temperature difference between droplet and cold wall surface get bigger, hence the underlying liquid droplet freeze faster, the liquid film on the top of droplet get thinner, and the time needed for freezing phase change get shorter. By using high-frequency nanosecond pulse dielectric barrier discharge, the deicing effect is obvious, and the discharge area acts seem as a "heat source". According to the way it functions, the process of deicing can be divided into two stages.
引文
[1]CALAY R K,HOLDOACUTE A E,MAYMAN P,et al.Experimental simulation of runback ice[J].Journal of Aircraft,2015,34(34):206-212.
    [2]BRAGG M B,BROEREN A P,BLUMENTHAL L A.Iced-airfoil and wing aerodynamics[J].Progress in Aerospace Science,2005,41(5):323-362.
    [3]KIND R J,POTAPCZUK M G,FEO A,et al.Experimental and computational simulation of in-flight icing phenomena[J].Progress in Aerospace Sciences,1998,34(5/6):257-345.
    [4]杜雁霞,李明,桂业伟,等.飞机结冰热力学行为研究综述[J].航空学报,2017,38(2):25-36.DU Y X,LI M,GUI Y W,et al.Review of thermodynamic behaviors in aircraft icing process[J].Acta Aeronautica Et Astronautica Sinica,2017,38(2):25-36.
    [5]杜雁霞,桂业伟,柯鹏,等.飞机结冰冰型微结构特征的分形研究[J].航空动力学报,2011,26(5):997-1002.DU Y X,GUI Y W,KE P,et al.Investigation on the ice-type microstructure characteristics of aircraft icing based on the fractal theories[J].Journal of Aerospace Power,2011,26(5):997-1002.
    [6]MOORE E B,DE I L E,WELKE K,et al.Freezing,melting and structure of ice in a hydrophilic nanopore[J].Physical Chemistry Chemical Physics,2010,12(16):4124-4134.
    [7]GALISON P.An Accident of History[M]//Atmospheric Flight in the Twentieth Century.Netherlands:Springer,2000:3-43.
    [8]COBER S,RATVASKY T,ISAAC G.Assessment of aircraft icing conditions observed during AIRS[C]//AIAA Aerospace Sciences Meeting&Exhibit.2013.
    [9]HONSEK R,HABASHI W G,AUBéM S.Eulerian modeling of inflight icing due to supercooled large droplets[J].Journal of Aircraft,2008,45(4):1290-1296.
    [10]LI H,WALDMAN R M,HU H.An experimental investigation on unsteady heat transfer and transient icing process upon impingement of water droplets[C]//AIAA Aerospace Sciences Meeting.AIAA Scitech,2015.
    [11]THOMAS S K,CASSONI R P,MACARTHUR C D.Aircraft antiicing and de-icing techniques and modeling[J].Journal of Aircraft,2012,33(5):841-854.
    [12]吴云,李应红.等离子体流动控制研究进展与展望[J].航空学报,2015,36(2):381-405.WU Y,LI Y H.Progress and outlook of plasma flow control[J].Acta Aeronautica Et Astronautica Sinica,2015,36(2):381-405.
    [13]TIRUMALA R,BENARD N,MOREAU E,et al.Temperature characterization of dielectric barrier discharge actuators:influence of electrical and geometric parameters[J].Journal of Physics D Applied Physics,2014,47(25):255203.
    [14]ULLMER D,PESCHKE P,TERZIS A,et al.Impact of ns-DBD plasma actuation on the boundary layer transition using convective heat transfer measurements[J].Journal of Physics D Applied Physics,2015,48(36):365203.
    [15]梁华,李应红,贾敏,等.等离子体气动激励的能量转化过程分析[J].高电压技术,2010,36(12):3054-3058.LIANG H,LI Y H,JIA M,et al.Energy conversion process analysis of plasma aerodynamic actuation[J].High Voltage Engineering,2010,36(12):3054-3058.
    [16]CAI J S,TIAN Y,MENG X S,et al.An experimental study of icing control using DBD plasma actuator[J].Experiments in Fluids,2017,58(8):102.
    [17]BOINOVICH L,EMELYANENKO A M,KOROLEV V V,et al.Effect of wettability on sessile drop freezing:when superhydrophobicity stimulates an extreme freezing delay[J].Langmuir,2014,30(6):1659-1668.
    [18]XIAO X,CHENG Y T,SHELDON B W,et al.Condensed water on superhydrophobic carbon films[J].Journal of Materials Research,2008,23(8):2174-2178.
    [19]杨宝海,王宏,朱恂,等.速度对液滴撞击超疏水壁面行为特性的影响[J].化工学报,2012,63(10):3027-3033.YANG B H,WANG H,ZHU X,et al.Effect of velocity on behavior of droplet impacting superhydrophobic surface[J].CIESC Journal,2012,63(10):3027-3033.
    [20]SNOEIJER J H,BRUNET P.Pointy ice-drops:how water freezes into a singular shape[J].American Journal of Physics,2012,80(9):764-771.
    [21]SCHETNIKOV A,MATIUNIN V,CHERNOV V.Conical shape of frozen water droplets[J].American Journal of Physics,2015,83(1):36-38.
    [22]李栋,王鑫,高尚文,等.单液滴撞击超疏水冷表面的反弹及破碎行为[J].化工学报,2017,68(6):2473-2482.LI D,WANG X,GAO S W,et al.Rebounding and splashing behavior of single water droplet impacting on cold superhydrophobic surface[J].CIESC Journal,2017,68(6):2473-2482.
    [23]CHAUDHARY G,LI R.Freezing of water droplets on solid surfaces:an experimental and numerical study[J].Experimental Thermal&Fluid Science,2014,57(3):86-93.
    [24]UNFER T,BOEUF J.Modeling and comparison of sinusoidal and nanosecond pulsed surface dielectric barrier discharges for flow control[J].Plasma Physics&Controlled Fusion,2010,52(12):124019.
    [25]WU Y,ZHU Y F,CUI W,et al.Simulation of nanosecond pulsed DBD plasma actuation with different rise times[J].Plasma Processes&Polymers,2015,12(7):642-654.
    [26]赵光银,李应红,方浩百,等.锯齿形等离子体激励器纳秒脉冲放电及红外辐射温度特性[J].高电压技术,2014,40(7):2077-2083.ZHAO G Y,LI Y H,FANG H B,et al.Characteristic of discharge and infrared radiation temperature of saw-toothed plasma actuators under nanosecond-pulse voltage[J].High Voltage Engineering,2014,40(7):2077-2083.
    [27]姜慧,邵涛,车学科,等.纳秒脉冲表面放电等离子体影响因素的实验研究[J].高电压技术,2012,38(7):1704-1710.JIANG H,SHAO T,CHE X K,et al.Experimental study on the factors influencing nanosecond-pulsed surface discharge plasma[J].High Voltage Engineering,2012,38(7):1704-1710.
    [28]BENARD N,ZOUZOU N,CLAVERIE A,et al.Optical visualization and electrical characterization of fast-rising pulsed dielectric barrier discharge for airflow control applications[J].Journal of Applied Physics,2012,111(3):47.
    [29]XU S Y,CAI J S,LI J.Modeling and simulation of plasma gas flow driven by a single nanosecond-pulsed dielectric barrier discharge[J].Physics of Plasmas,2016,23(10):1-84.
    [30]ZHU Y F,WU Y,CUI W,et al.Modelling of plasma aerodynamic actuation driven by nanosecond SDBD discharge[J].Journal of Physics D:Applied Physics,2013,46(35):355205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700