等离子体气动激励近壁区密度场的时空演化特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The spatial and temporal evolution characteristics of the density field near wall region actuated by plasma
  • 作者:李峰 ; 高超 ; 吕哲 ; 武斌
  • 英文作者:LI Feng;GAO Chao;Lü Zhe;WU Bin;National Key Laboratory of Science and Technology on Aerodynamic Design and Research, Northwestern Polytechnical University;
  • 关键词:等离子体激励 ; 流场特性 ; 静止大气 ; 高速纹影
  • 英文关键词:plasma actuation;;flow field characteristics;;static atmosphere;;high speed schlieren
  • 中文刊名:JEXK
  • 英文刊名:Scientia Sinica(Technologica)
  • 机构:西北工业大学翼型叶栅空气动力学国家重点实验室;
  • 出版日期:2018-10-20
  • 出版单位:中国科学:技术科学
  • 年:2018
  • 期:v.48
  • 基金:装备预研基金(批准号:61422010401);; 中国博士后科学基金(批准号:2018M633567);; 航空科学基金(批准号:2015ZD53053);; 陕西省自然科学基础研究计划(批准号:2016JQ1023)资助项目
  • 语种:中文;
  • 页:JEXK201810011
  • 页数:10
  • CN:10
  • ISSN:11-5844/TH
  • 分类号:96-105
摘要
选用介质阻挡等离子体激励模型,通过高速纹影技术,研究静止大气下等离子体气动激励近壁区密度场的时序特征和空间结构,结果表明:诱导涡的启动、发展直至消散是一个非定常的启动过程,当体积力和大气阻尼达到平衡后,诱导涡停止加速,传播速度达到最大值;在脉冲放电模式下,流动以间歇脉冲的方式传播,连续放电模式无法产生封闭的诱导涡,流动呈紊流状;载波电压和占空比是影响诱导涡起始位置和最大速度的关键参数,随着占空比的增大,诱导涡的起始位置推后,诱导涡的最大速度与电压正相关,最大速度的位置随着电压的升高而后移;脉冲频率是决定诱导涡生成频率的主导因素,诱导涡的生成频率与脉冲频率严格保持一致;脉冲放电导致的速度阶跃变化是诱导涡的形成机制,激励器放电和空置的切换瞬间是涡核开始生长的时刻,占空比决定诱导涡的空间结构和推进模式.
        Using the dielectric barrier discharge plasma actuating model and high speed schlieren technique, the spatial and temporal characteristics of the density field near wall region actuated by plasma has been investigated in the different discharge modes and electrical parameters. Experimental results indicate that the initiation, development and dissipation of the induced vortex is an unsteady start-up process. After the equilibrium of body force and atmospheric damp is reached, the induced vortex stops accelerating and reaches maximum speed. The induced flow propagates downstream with the intermittent pulsed pattern in the pulsed discharge mode. However, in the steady discharge mode, plasma aerodynamic actuation cannot generate the closed vortex and the flow develops in a continuous turbulent form. Carrier voltage and the duty cycle are the key parameters that affect the vortex start position and maximum flow speed. With the increase of duty ratio, the start position of induced vortex moves downstream. There is a positive correlation between the excitation voltage maximum speed and the location of the maximum speed is pushed back with the rise of voltage. Pulse frequency is the dominant factor which determines the vortex generation frequency and the vortex generation frequency and pulse frequency is strictly consistent. We also find that the jumping change of flow speed resulted from pulsed discharge is the formation mechanism of induced vortex. Switching moment of actuator is the zero hour of vortex growth and duty ratio dominates the spatial structure and developmental pattern of induced vortex.
引文
1李应红,吴云.等离子体流动控制技术研究进展.空军工程大学学报, 2012, 13:1–5
    2 Roth J R. Aerodynamic flow acceleration using paraelectric and peristaltic electrohydrodynamic effects of a One Atmosphere Uniform Glow Discharge Plasma. Phys Plasmas, 2003, 10:2117–2126
    3 Moreau E. Airflow control by non-thermal plasma actuators. J Phys D-Appl Phys, 2007, 40:605–636
    4 Corke T C, Enloe C L, Wilkinson S P. Dielectric barrier discharge plasma actuators for flow control. Annu Rev Fluid Mech, 2010, 42:505–529
    5 Roth J R, Sherman D M, Wilkinson S P. Boundary layer flow control with a one atmosphere uniform glow discharge. In:36th AIAA Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings. Reno, 1998
    6 Roth J R, Sherman D M, Wilkinson S P. Electrohydrodynamic flow control with a glow-discharge surface plasma. AIAA J, 2000, 38:1166–1172
    7 Font G I. Boundary layer control with atmospheric plasma discharges. AIAA J, 2006, 44:1572–1578
    8 Font G I, Morgan W L. Plasma discharges in atmospheric pressure oxygen for boundary layer separation control. In:35th AIAA Fluid Dynamics Conference and Exhibit. Toronto, 2005
    9 Poter C O, Baughn J W, McLaughlin T E, et al. Temporal force measurements on an aerodynamic plasma actuator. In:44th AIAA Aerospace Sciences Meeting and Exhibit. Reno, 2006
    10 Forte M, Jolibois J, Pons J, et al. Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity:Application to airflow control. Exp Fluids, 2007, 43:917–928
    11 Santhanakrishnan A, Jacob J, Suzen Y. Flow control using plasma actuators and linear/annular plasma synthetic jet actuators. In:3rd AIAA Flow Control Conference, Fluid Dynamics and Co-located Conferences. San Francisco, 2006
    12 Do H, Kim W, Mungal M G, et al. Bluff body flow separation control using surface dielectric barrier discharges. In:45th AIAA Aerospace Sciences Meeting and Exhibit. Reno, 2007
    13 Forte M, Moreau E, Touchard G, et al. Optimization of dielectric barrier discharge actuator. In:44th AIAA Aerospace Sciences Meeting and Exhibit. Reno, 2006
    14 Takashima K, Zuzeek Y, Lempert W R, et al. Characterization of a surface dielectric barrier discharge plasma sustained by repetitive nanosecond pulses. Plasma Sources Sci Technol, 2011, 20:055009
    15 Zhao Z J, Li J M, Zheng J G, et al. Study of shock and induced flow dynamics by pulsed nanosecond DBD plasma actuators. In:52nd Aerospace Sciences Meeting. National Harbor, 2014
    16 Jin D, Li Y H, Jia M, et al. Investigation on the shockwave induced by surface arc plasma in quiescent air. Chin Phys B, 2014, 23:035201
    17 Liu F C, He Y F, Wang X F. Mode transition in homogenous dielectric barrier discharge in argon at atmospheric pressure. Chin Phys B, 2014, 23:075209
    18 Benard N, Moreau E. Role of the electric waveform supplying a dielectric barrier discharge plasma actuator. Appl Phys Lett, 2012, 100:193503
    19 Benard N, Moreau E, Griffin J, et al. Slope seeking for autonomous lift improvement by plasma surface discharge. Exp Fluids, 2010, 48:791–808
    20 Benard N, Moreau E. Electric wind produced by a surface plasma discharge energized by a burst modulated high voltage. In:Proceedings of the29 th International Conference on Plasma Ionized Gazes, ICPIG. Cancun, 2009
    21 Benard N, Debien A, Moreau E. Time-dependent volume force produced by a non-thermal plasma actuator from experimental velocity field. J Phys D-Appl Phys, 2013, 46:245201
    22 李应红,吴云,梁华,等.提高抑制流动分离能力的等离子体冲击流动控制原理.科学通报, 2010, 55:3060–3068
    23 李应红,梁华,马清源,等.脉冲等离子体气动激励抑制翼型吸力面流动分离的实验研究.航空学报, 2008, 29:1429–1435
    24 梁华,李应红,宋慧敏,等.等离子体气动激励诱导空气流动的PIV研究.实验流体力学, 2011, 25:22–25
    25 李钢,聂超群,李汉明,等.介质阻挡放电等离子体力学特性研究.科技导报, 2011, 26:51–55
    26 李钢,穆克进,聂超群,等.平面激光诱导荧光技术在交错电极介质阻挡放电等离子体研究中的初步应用.物理学报, 2008, 57:6444–6449
    27 李钢,李轶明,徐燕骥,等.介质阻挡放电等离子体对近壁区流场的控制的实验研究.物理学报, 2009, 58:4026–4033
    28 张攀峰,王晋军,施威毅,等.等离子体激励低速分离流动控制实验研究.实验流体力学, 2007, 21:35–39
    29 Zheng B R, Gao C, Li Y B, et al. Momentum transfer in millisecond periodic-pulsed dielectric-barrier-discharge plasma actuator. In:49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Orlando, 2011
    30 赵光银,李应红,梁华,等.纳秒脉冲表面介质阻挡等离子体激励唯象学仿真.物理学报, 2015, 64:01510
    31 Moreau E, Sosa R, Artana G. Electric wind produced by surface plasma actuators:A new dielectric barrier discharge based on a three-electrode geometry. J Phys D-Appl Phys, 2008, 41:115204

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700