用户名: 密码: 验证码:
Cu/还原氧化石墨烯光催化复合材料的制备及其光催化性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and photocatalytic activity of Cu/reduced graphene oxide photocatalytic composites
  • 作者:李娟 ; 赵安婷 ; 邵姣婧 ; 唐晓宁 ; 卢丽平
  • 英文作者:LI Juan;ZHAO Anting;SHAO Jiaojing;TANG Xiaoning;LU Liping;College of Chemistry and Chemical Engineering,Guizhou University;College of Materials and Metallurgy,Guizhou University;
  • 关键词:Cu ; 石墨烯 ; 光催化 ; 亚甲基蓝 ; 液相化学法
  • 英文关键词:Cu;;graphene;;photocatalytic;;methylene blue;;liquid phase chemical method
  • 中文刊名:FUHE
  • 英文刊名:Acta Materiae Compositae Sinica
  • 机构:贵州大学化学与化工学院;贵州大学材料与冶金学院;
  • 出版日期:2018-01-17 10:40
  • 出版单位:复合材料学报
  • 年:2018
  • 期:v.35
  • 基金:国家自然科学基金(21564002;21272045);; 贵州大学SRT基金((2015)159)
  • 语种:中文;
  • 页:FUHE201809030
  • 页数:7
  • CN:09
  • ISSN:11-1801/TB
  • 分类号:255-261
摘要
以乙酸铜和氧化石墨烯(GO)为原料,抗坏血酸为还原剂,采用液相化学法合成Cu/还原氧化石墨烯(Cu/RGO)复合材料。通过XRD、SEM、TEM、FTIR和Raman对材料结构及形貌进行表征,并考察Cu/RGO复合材料在H2O2辅助作用下对亚甲基蓝(MB)的光催化作用。结果表明:Cu颗粒均匀分布在RGO片层上,相比于纯Cu,Cu/RGO复合材料的光催化性能明显提高,Cu/RGO复合材料用量为0.06g/L时,对MB显示出最佳的催化效果,200min内脱色率达到了92.5%,经过5次循环后脱色率仍有88.0%以上。
        Cu/reduced graphene oxide(RGO)photocatalytic composites were prepared through the liquid phase chemical method by using cupric acetate and graphene oxide(GO)as the precursors and ascorbic acid as the reducing agent.The Cu/RGO composites were characterized by XRD,SEM,TEM,FTIR and Raman,the photocatalytic performance of composites toward methylene blue was investigated under the aid of H_2O_2.The results show that the Cu particles uniformly distribute on the RGO sheets,and the Cu/RGO composite exhibites good catalytic activity for the decolorization of methylene blue.The Cu/RGO composite shows the best catalytic performance for MB when the composite dosage is 0.06 g/L,the decolorization rate reach 92.5% in 200 min,and the decolorization rate remains 88.0% after 5 cycles.
引文
[1]ZHAO D L,YANG X,CHEN C L,et al.Enhanced photocatalytic degradation of methylene blue on multiwalled carbon nanotubes-TiO2[J].Journal of Colloid and Interface Science,2013,398:234-239.
    [2]MARIEN C B D,COTTINEAU T,ROBERT D,et al.TiO2Nanotube arrays:Influence of tube length on the photocatalytic degradation of Paraquat[J].Applied Catalysis B:Environmental,2016,194(5):1-6.
    [3]李小娟,黄斌,李小飞,等.TiO2-Fe3O4/MIL-101(Cr)磁性复合光催化材料的制备及其光催化性能[J].复合材料学报,2017,34(7):1596-1602.LI X J,HUANG B,LI X F,et al.Preparation and photocatalytic activity of magnetic TiO2-Fe3O4/MIL-101(Cr)composites[J].Acta Materiae Compositae Sinica,2017,34(7):1596-1602(in Chinese).
    [4]PAULUS U A,SCHMIDT T J,GASTEIGER H A,et al.Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst:A thin-film rotating ring-disk electrode study[J].Journal of Electroanalytical Chemistry,2001,495(2):134-145.
    [5]SARDAR R,BEASLEY C A,MURRAY R W.Interfacial ion transfers between a monolayer phase of cationic Au nanoparticles and contacting organic solvent[J].Journal of the American Chemical Society,2010,132(6):2058-2063.
    [6]HU Y,YANG X,CAO S,et al.Effect of the dispersants on Pd species and catalytic activity of supported palladium catalyst[J].Applied Surface Science,2017,400:148-153.
    [7]ALMEIDAA B M,JR M A M,BETTINI J,et al.A novel nanocomposite based on TiO2/Cu2O/reduced graphene oxide with enhanced solar-light-driven photocatalytic activity[J].Applied Surface Science,2015,324:419-431.
    [8]LI H,SU Z,HU S,et al.Free-standing and flexible Cu/Cu2O/CuO heterojunction net:A novel material as cost-effective and easily recycled visible-light photocatalyst[J].Applied Catalysis B:Environmental,2017,207:134-142.
    [9]CHOI J,OH H,HAN S W,et al.Preparation and characterization of graphene oxide supported Cu,Cu2O,and CuO nanocomposites and their high photocatalytic activity for organic dye molecule[J].Current Applied Physics,2017,17(2):137-145.
    [10]XU H,FENG J X,TONG Y,et al.Cu2O-Cu hybrid foams as high-performance electrocatalysts for oxygen evolution reaction in alkaline media[J].ACS Catalysis,2017,7(2):986-991.
    [11]NOVOSELOV K S,GEIM A K,MOROZOV S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669.
    [12]XIANG Q J,YU J G,JARONIEC M.Graphene-based semiconductor photocatalysts[J].Chemical Society Reviews,2012,41(2):782-796.
    [13]HUANG X,QI X Y,BOEYAB F,et al.Graphene-based composites[J].Chemical Society Reviews,2012,41(2):666-686.
    [14]邵姣婧,郑德一,李政杰,等.二维纳米材料的自上而下制备:可控液相剥离[J].新型炭材料,2016,31(2):97-114.SHAO J J,ZHENG D Y,LI Z J,et al.Top-down fabrication of two-dimensional nanomaterials:Controllable liquid phase exfoliation[J].New Carbon Materials,2016,31(2):97-114(in Chinese).
    [15]SONG S,BEI C,WU N,et al.Structure effect of graphene on the photocatalytic performance of plasmonic Ag/Ag2CO3-rGO for photocatalytic elimination of pollutants[J].Applied Catalysis B:Environmental,2016,181:71-78.
    [16]SHIRZAD-SIBONI M,JONIDI-JAFARI A,FARZADKIA M,et al.Enhancement of photocatalytic activity of Cu-doped ZnO nanorods for the degradation of an insecticide:Kinetics and reaction pathways[J].Journal of Environmental Management,2017,186:1-11.
    [17]LIU S,TIAN J,WANG L,et al.One-pot synthesis of CuO nanoflower-decorated reduced graphene oxide and its application to photocatalytic degradation of dyes[J].Catalysisence&Technology,2011,2(2):339-344.
    [18]GAO Z Y,LIU N,WU D P,et al.Graphene-CdS composite,synthesis and enhanced photocatalytic activity[J].Applied Surface Science,2012,258:2473-2478.
    [19]XU T,ZHANG L,CHENG H,et al.Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study[J].Applied Catalysis B:Environmental,2011,101(3-4):382-387.
    [20]XIE G,CHENG J,LI Y,et al.Fluorescent graphene oxide composites synthesis and its biocompatibility study[J].Journal of Materials Chemistry,2012,22(18):9308-9314.
    [21]STANKOVICH S,DIKIN D A,PINER R D,et al.Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J].Carbon,2007,45(7):1558-1565.
    [22]SZABO T,TOMBACZ E,ILLES E,et al.Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides[J].Carbon,2006,44(3):537-545.
    [23]ZHANG N,LIU S,FU X,et al.Synthesis of M@TiO2(M=Au,Pd,Pt)core-shell nanocomposites with tunable photoreactivit[J].The Journal of Physical Chemistry C,2011,115(18):9136-9145.
    [24]WILLANDER M,HASAN K U,NUR O,et al.Recent progress on growth and device development of ZnO and CuO nanostructures and graphene nanosheets[J].Journal of Materials Chemistry,2012,22(6):2337-2350.
    [25]刘波,孙红娟,彭同江.石墨烯分子振动模式因子群分析与密度泛函计算[J].物理化学学报,2012,28(4):799-804.LIU B,SUN H J,PENG T J.Factor group analysis of molecular vibrational modes of graphene and density functional calculations[J].Acta Physico-Chimica Sinica,2012,28(4):799-804(in Chinese).
    [26]LI J,CHEN C L,ZHANG R,et al.Nanoscale zero-valent iron particles supported on reduced graphene oxides by using aplasma technique and their application for removal of heavymetal ions[J].Chemistry an Asian Journal,2015,10(6):1410-1417.
    [27]GUO S,WEN D,ZHAI Y,et al.Platinum nanoparticle ensemble-on-graphene hybrid nanosheet:One-pot,rapid synthesis,and used as new electrode material for electrochemical sensing[J].ACS Nano,2010,4(7):3959-3968.
    [28]LEE K H,HAN S W,KWON K Y,et al.Systematic analysis of palladium-graphene nanocomposites and their catalytic applications in Sonogashira reaction[J].Journal of Colloid&Interface Science,2013,403(4):127-133.
    [29]ZHANG X Y,LI H P,CUI X L,et al.Graphene/TiO2nanocomposites:Synthesis,characterization and application in hydrogen evolution from water photocatalytic splitting[J].Journal of Materials Chemistry,2010,20(14):2801-2806.
    [30]NOSAKA Y,KOMORI S,YAWATA K,et al.Photocatalytic OH radical formation in TiO2aqueous suspension studied by several detection methods[J].Physical Chemistry Chemical Physics,2003,5(20):4731-4735.
    [31]QIU B C,XING M Y,ZHANG J L.Mesoporous TiO2nanocrystals grown in-situ on graphene aerogels for high photocatalysis and lithium ion batteries[J].American Chemical Society,2014,136(16):5852-5855.
    [32]SUN L,WANG G,HAO R,et al.Solvothermal fabrication and enhanced visible light photocatalytic activity of Cu2Oreduced graphene oxide composite microspheres for photodegradation of Rhodamine B[J].Applied Surface Science,2015,358:91-99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700