软体机器人制造工艺研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress on the Manufacturing Technology of the Soft Robot
  • 作者:赵梦凡 ; 常博 ; 葛正浩 ; 朱朝飞 ; 王政杰
  • 英文作者:Zhao Mengfan;Chang Bo;Ge Zhenghao;Zhu Zhaofei;Wang Zhengjie;Mechanical and Electrical Engineering,Shaanxi University of Science & Technology;
  • 关键词:软体机器人 ; 3D打印技术 ; 转印技术 ; 形状沉积工艺 ; 智能复合微结构法
  • 英文关键词:soft robot;;3D printing technology;;transfer printing technology;;shape deposition process;;smart composite microstructure method
  • 中文刊名:BDTQ
  • 英文刊名:Micronanoelectronic Technology
  • 机构:陕西科技大学机电工程学院;
  • 出版日期:2018-07-06
  • 出版单位:微纳电子技术
  • 年:2018
  • 期:v.55;No.495
  • 基金:国家自然科学基金资助项目(61703255);; 华中科技大学数字制造装备与技术国家重点实验室开放课题资助项目(DMETKF2017004)
  • 语种:中文;
  • 页:BDTQ201808014
  • 页数:7
  • CN:08
  • ISSN:13-1314/TN
  • 分类号:73-79
摘要
综述了软体机器人的制造工艺研究进展及目前主要的应用领域。其中详细介绍了3D打印技术、转印技术、形状沉积工艺、智能复合微结构法及微注塑成型等几种软体机器人制造工艺,探讨了各制造工艺的特点及所面临的挑战,并阐述了软体机器人的应用领域,如工业生产、野外勘探、娱乐电子设备及生物医疗等领域,尤其在生物医疗领域软体机器人具有广阔的发展空间。同时,也提出了软体机器人未来可能的发展前景及发展趋势,为软体机器人领域的进一步研究提供了可参考的理论依据。
        The research progress of the manufacturing technology and main application fields of the soft robots are summarized.Several manufacturing technologies of the soft robots,such as3 D printing technology,transfer printing technology,shape deposition process,smart composite microstructure method and micro injection molding are introduced in detail.The characteristics and challenges of each manufacturing technology are discussed,and the application fields of the soft robots are presented,such as the industrial production,field exploration,entertainment electronic equipment,biomedicine and other fields,especially in the biomedical soft robots with a broad development space.Meanwhile,the development prospect and trend of the soft robots in the future are also put forward,providing a reference theoretical basis for the further research in the field of the soft robots.
引文
[1]RUS D,TOLLEY M T.Design,fabrication and control of soft robots[J].Nature,2015,521(7553):467-475.
    [2]WEHNER M,TRUBY R L,FITZGERALD D J,et al.An integrated design and fabrication strategy for entirely soft,autonomous robots[J].Nature,2016,536(7617):451-455.
    [3]BARTLETT N W,TOLLEY M T,OVERVELDE J T B,et al.A3D-printed,functionally graded soft robot powered by combustion[J].Science,2015,349(6244):161-165.
    [4]TOLLEY M T,SHEPHERD R F,KARPELSON M,et al.An untethered jumping soft robot[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.Chicago,IL,USA,2014:561-566.
    [5]JUSTUS K,SAURABH S,BRUCHEZ M,et al.Integrating synthetic cells and flexible electronics for the control of bio-opto-fluidic materials[J].Biophysical Journal,2014,106(2):617a-618a.
    [6]ONAL C D,RUS D.Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot[J].Bioinspiration&Biomimetics,2013,8(2):026003-1-026003-10.
    [7]WAKIMOTO S,SUZUMORI K.Fabrication and basic experiments of pneumatic multi-chamber rubber tube actuator for assisting colonoscope insertion[C]//Proceedings of the IEEE International Conference on Robotics and Automation.Anchorage,Alaska,USA,2010:3260-3265.
    [8]POLYGERINOS P,WANG Z,GALLOWAY K C,et al.Soft robotic glove for combined assistance and at-home rehabilitation[J].Robotics&Autonomous Systems,2014,73(C):135-143.
    [9]MAEDER-YORK P,CLITES T,BOGGS E,et al.Biologically inspired soft robot for thumb rehabilitation[J].Journal of Medical Devices,2014,8(2):1815-1847.
    [10]PARK Y L,CHEN B R,PEREZARANCIBIA N O,et al.Design and control of a bio-inspired soft wearable robotic device for ankle-foot rehabilitation[J].Bioinspiration&Biomimetics,2014,9(1):016007-1-016007-17.
    [11]FORREST S R.The path to ubiquitous and low-cost organic electronic appliances on plastic[J].Nature,2004,428(6986):911-918.
    [12]BROCHU P,PEI Q.Advances in dielectric elastomers for actuators and artificial muscles[J].Macromol Rapid Commun,2010,31(1):10-36.
    [13]BHANDARI B,LEE G Y,AHN S H.A review on IPMC material as actuators and sensors:fabrications,characteristics and applications[J].International Journal of Precision Engineering&Manufacturing,2012,13(1):141-163.
    [14]SATARKAR N S,BISWAL D,HILT J Z.Hydrogel nanocomposites:a review of applications as remote controlled biomaterials[J].Soft Matter,2010,6(11):2364-2371.
    [15]WANG Z,WANG Y,LI J,et al.A micro biomimetic manta ray robot fish actuated by SMA[C]//Proceedings of the IEEE International Conference on Robotics and Biomimetics.Guilin,China,2010:1809-1813.
    [16]MENCIASSI A,GORINI S,PERNORIO G,et al.A SMA actuated artificial earthworm[C]//Proceedings of the IEEE International Conference on Robotics and Automation.New Orleans,LA,USA,2004:3282-3287.
    [17]SHEN Q,WANG T,LIANG J,et al.Hydrodynamic performance of a biomimetic robotic swimmer actuated by ionic polymer-metal composite[J].Smart Materials&Structures,2013,22(7):075035-1-075035-13.
    [18]CHO K J,KOH J S,KIM S,et al.Review of manufacturing processes for soft biomimetic robots[J].International Journal of Precision Engineering&Manufacturing,2009,10(3):171-181.
    [19]BOLEY J W,WHITE E L,CHIU G T C,et al.Direct writing of gallium-indium alloy for stretchable electronics[J].Advanced Functional Materials,2014,24(23):3501-3507.
    [20]ZOLFAGHARIAN A,KOUZANI A Z,SUI Y K,et al.Evolution of 3D printed soft actuators[J].Sensors&Actuators:A,2016,250(2016):258-272.
    [21]MUTH J T,VOGT D M,TRUBY R L,et al.Embedded3D printing of strain sensors within highly stretchable elastomers[J].Advanced Materials,2014,26(36):6307-6312.
    [22]杨卫民,迟百宏,高晓东,等.软物质材料3D打印技术研究进展[J].塑料,2016,45(1):70-74.
    [23]张吉.软质尼龙材料3D打印与软质PUA光固化材料的研究[D].杭州:浙江理工大学,2016.
    [24]黄银,李海成,陈颖,等.可延展柔性光子/电子集成器件及转印技术[J].中国科学:物理学力学天文学,2016,46(4):044607-1-044607-14.
    [25]CARLSON A,BOWEN A M,HUANG Y,et al.Transfer printing techniques for materials assembly and micro/nanodevice fabrication[J].Advanced Materials,2012,24(39):5284-5318.
    [26]MEITL M A,ZHU Z T,KUMAR V,et al.Transfer printing by kinetic control of adhesion to an elastomeric stamp[J].Nature Materials,2016,5(1):33-38.
    [27]WU J D,DAN Q,LIU S.Effect of viscoelasticity of PDMS on transfer printing[C]//Proceedings of the IEEE International Conference on Electronic Packaging Technology.Changsha,China,2015:759-764.
    [28]KIM S,WU J,CARLSON A,et al.Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing[J].Proceedings of the National Academy of Sciences of the United States of America,2010,107(40):17095-17100.
    [29]EISENHAURE J D,SANG I R,AL-OKAILY A M,et al.The use of shape memory polymers for microassembly by transfer printing[J].Journal of Microelectromechanical Systems,2014,23(5):1012-1014.
    [30]BAILEY S A,CHAM J G,CUTKOSKY M R,et al.Biomimetic robotic mechanisms via shape deposition manufacturing[C]//Proceedings of the International Symposium of Robotics Research.London,England,2000:403-410.
    [31]MERZ R,PRINZ F B,RAMASWAMI K,et al.Shape deposition manufacturing[J].Robotics Research International Symposium,1994,57(1):231-234.
    [32]CHAM J G,BAILEY S A,CLARK J E,et al.Fast and robust:hexapedal robots via shape deposition manufacturing[J].International Journal of Robotics Research,2002,21(10):869-882.
    [33]CHO K J,HAWKES E,QUINN C,et al.Design,fabrication and analysis of a body-caudal fin propulsion system for a microrobotic fish[C]//Proceedings of the IEEE International Conference on Robotics and Automation.Pasadena,CA,USA,2008:706-711.
    [34]WOOD R J,AVADHANULA S,SAHAI R,et al.Microrobot design using fiber reinforced composites[J].Journal of Mechanical Design,2008,130(5):680-682.
    [35]KOH J S,CHO K J.Omegabot:biomimetic inchworm robot using SMA coil actuator and smart composite microstructures(SCM)[C]//Proceedings of the IEEE International Conference on Robotics and Biomimetics.Guilin,China,2009:1154-1159.
    [36]FU G,LOH N H,TOR S B,et al.Replication of metal microstructures by micro powder injection molding[J].Materials&Design,2004,25(8):729-733.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700