电磁振动给料机内颗粒物料的定量加料特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Quantitative feeding characteristics of granular materials in electromagnetic vibration feeder
  • 作者:彭美豹 ; 刘义伦 ; 赵先琼 ; 刘驰 ; 刘思琪 ; 付卓
  • 英文作者:PENG Meibao;LIU Yilun;ZHAO Xianqiong;LIU Chi;LIU Siqi;FU Zhuo;College of Mechanical and Electrical Engineering, Central South University;Light Alloy Research Institute, Central South University;College of Mechanical and Electrical Engineering, Changsha University;
  • 关键词:电磁振动给料机 ; 离散单元法 ; 定量加料 ; 流动行为
  • 英文关键词:electromagnetic vibration feeder;;discrete element method;;precision dosing;;flow behavior
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:中南大学机电工程学院;中南大学轻合金研究院;长沙学院机电工程学院;
  • 出版日期:2019-05-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.332
  • 基金:国家自然科学基金(51375500);; 长沙市科技计划重点项目(K1508090-11),长沙市科技计划(k1705052);; 湖南省教育厅科学研究项目(16C0140)
  • 语种:中文;
  • 页:HGJZ201905009
  • 页数:8
  • CN:05
  • ISSN:11-1954/TQ
  • 分类号:83-90
摘要
为提高电磁振动给料机定量加料性能,采用离散单元法建立振幅和闸门开度双重控制参数下电振机的计算模型,从颗粒群运动状态和力学特性的角度研究控制参数对加料流量快速性和稳定性的影响,并通过实验验证了计算模型的可靠性。结果表明:加料流量均值随振幅、闸门开度的增加分别呈二次曲线和线性增长,且料层厚度的变化引起加料速度的改变使得振幅与闸门开度间存在交互因子;提升振幅,闸门内侧外层颗粒紊流区域增加,闸门口弧状流流速加快;减小振幅至2.0mm或增大闸门开度至16mm,都能有效降低颗粒与颗粒、颗粒与槽面之间法向、切向上的平均接触力和最大接触力,颗粒群流动密实性增加,颗粒体系受力更为均衡,流动一致性更好,进而使加料流量变异系数减小,定量加料快速性和稳定性综合性能提高。
        To improve the quantitative feeding performance of electromagnetic vibratory feeder, the simulation model of vibrator under the dual control method of amplitude and gate opening was established based on the discrete element method. The influence of control parameters on the stability and accuracy of the feeding flow was studied from the perspective of the particle group motion state and mechanical properties, and the reliability of the model was validated by experiments. The results showed that the mean value of the feed flow respectively appears a quadratic curve and linear growth with the increase of amplitude and gate opening, and the change of feeding velocity caused by the change of layer thickness makes the interaction factor between amplitude and gate opening. With the increase of amplitude, the turbulent flow area of the outer layer particles of the inner side of the gate increases, and the velocity of the arc flow at the gate is also accelerated. When the amplitude is reduced to 2.0 mm or the gate opening is increased to 16 mm, the normal and tangential average contact force and the maximum contact force between particle-particle and particle-groove can be effectively reduced, and the flow density of the particle group can be increased. The force of the particle system is more uniform, the flow consistency is better. Furthermore, the variation coefficient of the feeding flow is reduced, and the comprehensive performance of the rapidity and stability of the quantitative feeding is improved.
引文
[1]TARDOS G I,LU Q.Precision dosing of powders by vibratory and screw feeders:an experimental study[J].Advanced Powder Technology,1996,7(1):51-58.
    [2]尹忠俊,张连万,韩天.振动给料机的研究与发展趋势[J].冶金设备,2010(5):49-54.YIN Z J,ZHANG L W,HAN T.Study and development of vibratory feeder[J].Metallurgical Equipment,2010(5):49-54.
    [3]郝晓琳,李志华.电磁振动给料机在配料称量系统中的应用分析[J].橡塑技术与装备,2005,31(10):41-44.HE X L,LI Z H.Application analysis of electromagnetic vibrating feeder in batching weighing system[J].Rubber Technology and Equipment,2005,31(10):41-44.
    [4]RADEMACHER F J C,BORG L.On the theoretical and experimental conveying speed of granular bulk solids on vibratory conveyors[J].Forschung Im Ingenieurwesen,1994,60(10):261-283.
    [5]SLOOT E,KRUYT N P.Theoretical and experimental study of the transport of granular materials by inclined vibratory conveyors[J].Powder Technology,1996,87(3):203-210.
    [6]王绍侠,高刚华.种子定量电子秤电磁振动变速给料的原理与应用[J].农业机械学报,1998(s1):143-149.WANG S X,GAO G H.The principle and test of variable feeds by electromagnetic vibration for the seed electron balance[J].Transactions of the Chinese Society for Agricultural Machinery,1998(s1):143-149.
    [7]张西良.粉粒物料自动定量机理及系统研发[D].镇江:江苏大学,2008.ZHANG X L.Research&.development on automatic quantification system for powder/particle materials[D].Zhenjiang:Jiangsu University,2008.
    [8]RIBIC A I,DESPOTOVIC Z V.High-performance feedback control of electromagnetic vibratory feeder[J].IEEE Transactions on Industrial Electronics,2010,57(9):3087-3094.
    [9]戚俊,龚大伟,李燕,等.基于模糊PID控制的电磁式定量给料系统[J].食品与机械,2016(11):74-78.QI J,GONG D W,LI Y,et al.Electromagnetic vibration quantitative feeding system based on fuzzy PID[J].Food&Machinery,2016(11):74-78.
    [10]孔祥希,邢金昕,闻邦椿.直线振动输送机物料运动状态分析[J].东北大学学报(自然科学版),2015(6):827-831.KONG X X,XING J X,WEN B C.Analysis of motion of the part on the linear vibratory conveyor[J].Journal of Northeastern University(Natural Science),2015(6):827-831.
    [11]CUNDALL P A,STRACK O D L.A discrete numerical model for granular assemblies[J].Géotechnique,1979,29(30):331-336.
    [12]杨洋,唐寿高.颗粒流的离散元法模拟及其进展[J].中国粉体技术,2006(5):38-43.YANG Y,TANG S G.Discrete element method simulation of granular flow and its advances[J].China Powder Science and Technology,2006(5):38-43.
    [13]ZHU H P,ZHOU Z Y,YANG R Y,et al.Discrete particle simulation of particulate systems:a review of major applications and findings[J].Chemical Engineering Science,2008,63(23):5728-5770.
    [14]陈进,周韩,赵湛,等.基于EDEM的振动种盘中水稻种群运动规律研究[J].农业机械学报,2011,42(10):79-83.CHEN J,ZHOU H,ZHAO Z,et al.Analysis of rice seeds motion on vibrating plate using EDEM[J].Transactions of the Chinese Society for Agricultural Machinery,2011,42(10):79-83.
    [15]ASHRAFIZADEH H,ZIAEI-RAD S.A numerical 2D simulation of part motion in vibratory bowl feeders by discrete element method[J].Journal of Sound&Vibration,2013,332(13):3303-3314.
    [16]武永桥,管声启,柴彩彩.基于EDEM的固体粉末物料振动下料过程分析[J].西安工程大学学报,2017,31(2):278-282.WU Y Q,GUAN S Q,CHAI C C.Analysis of vibration feeding process of solid powder material based on EDEM[J].Journal of Xi’an Polytechnic University,2017,31(2):278-282.
    [17]赵跃民,张曙光,焦红光,等.振动平面上粒群运动的离散元模拟[J].中国矿业大学学报,2006,35(5):586-590.ZHAO Y M,ZHANG S G,JIAO H G,et al.Simulation of discrete element of particles motion on the vibration plane[J].Journal of China University of Mining&Technology,2006,35(5):586-590.
    [18]纪克鹏,唐辰,吴志荣,等.插板阀在振动给料机给料精度控制中的应用[J].包装与食品机械,2015(6):63-65.JI K P,TANG C,WU Z R,et al.Application of flat gate valve in feeding accuracy control of vibrating feeder[J].Packaging and Food Machinery,2015(6):63-65.
    [19]ZHANG K,CHEN T,WANG X,et al.Rheology behavior and optimal damping effect of granular particles in a non-obstructive particle damper[J].Journal of Sound&Vibration,2016,364:30-43.
    [20]赵庆荣.电磁振动定量给料系统的设计与研究[D].沈阳:东北大学,2012.ZHAO Q R.Design and research of electromagnetic vibration quantitative feeding system[D].Shenyang:Northeastern University,2012.
    [21]LIM G H.On the conveying velocity of a vibratory feeder[J].Computers&Structures,1997,62(1):197-203.
    [22]CAMPBELL C S.Granular material flows-An overview[J].Powder Technology,2006,162(3):208-229.
    [23]ERDEMSIMSEK,SIEGMARWIRTZ,VIKTORSCHERER,et al.An experimental and numerical study of transversal dispersion of granular material on a vibrating conveyor[J].Particulate Science&Technology,2008,26(2):177-196.
    [24]NING Z,BOEREFIJN R,GHADIRI M,et al.Distinct element simulation of impact breakage of lactose agglomerates[J].Advanced Powder Technology,1997,8(1):15-37.
    [25]TSUJI Y,TANAKA T,ISHIDA T.Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe[J].Powder Technology,1992,71(3):239-250.
    [26]刘举,白鹏博,凡凤仙,等.竖直振动下颗粒物质的行为模式研究进展[J].化工进展,2016,35(7):1956-1962.LIU J,BAI P B,FAN F X,et al.Research progress on behavior mode of granular matter under vertical vibration[J].Chemical Industry and Engineering Progress,2016,35(7):1956-1962.
    [27]刘义伦,刘思琪,赵先琼,等.偏心楔形喂料斗卸料过程中颗粒流动特性[J].化工学报,2018,69(4):1469-1475.LIU Y L,LIU S Q,ZHAO X Q,et al.Flow characteristics of granule discharged from eccentric wedge-shaped feed hopper[J].CIESCJournal,2018,69(4):1469-1475.
    [28]吴爱祥,孙业志,黎剑华.散体流动场中波的传播与振动助流机理[J].中国有色金属学报,2001(4):661-665.WU A X,SUN Y Z,LI J H.Wave propagation and mechanism of aided flow by vibration in granular flow field[J].The Chinese Journal of Nonferrous Metals,2001(4):661-665.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700