超临界压力下低温甲烷传热特性数值研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical study of cryogenic methane heat transfer characteristics under supercritical pressure
  • 作者:杨帆 ; 刘畅 ; 姜文全 ; 晏永飞 ; 王国付 ; 潘斌
  • 英文作者:YANG Fan;LIU Chang;JIANG Wenquan;YAN Yongfei;WANG Guofu;PAN Bin;College of Petroleum Engineering in Liaoning Shihua University;
  • 关键词:超临界压力 ; 低温甲烷 ; 传热强化 ; 传热恶化
  • 英文关键词:supercritical pressure;;cryogenic methane;;heat transfer enhance(HTE);;heat transfer deterioration(HTD)
  • 中文刊名:SYDX
  • 英文刊名:Journal of China University of Petroleum(Edition of Natural Science)
  • 机构:辽宁石油化工大学石油天然气工程学院;
  • 出版日期:2018-12-20
  • 出版单位:中国石油大学学报(自然科学版)
  • 年:2018
  • 期:v.42;No.230
  • 基金:辽宁省自然科学基金面上项目(20170540587)
  • 语种:中文;
  • 页:SYDX201806016
  • 页数:6
  • CN:06
  • ISSN:37-1441/TE
  • 分类号:144-149
摘要
对16 mm内径的光滑圆管内超临界压力下低温甲烷的流动与传热进行数值研究,系统地模拟热流密度为100~400 kW/m~2工况下不同流动方向的传热,分析传热强化和恶化过程中流体温度、速度和物性分布。结果表明:热流密度越大,传热强化发生的越早、峰值越高、恶化越迅速,而在较低热流密度下则不发生传热强化和恶化行为;水平流动中管顶、底的换热系数在强化段存在差异,而竖直向上流动中换热系数的分布具有对称性;边界层内的大质量热容和密度差产生的浮升力是传热强化的主要原因,边界层内的低质量热容和轴向上的热加速效应是传热恶化的主要原因。
        The fluid and heat transfer characteristics of cryogenic methane were studied in a horizontal pipe of 16 mm inner diameter under the supercritical pressure. The heat transfer processes were simulated in the range from 100 to 400 kW/m~2 heat fluxes in different flow directions. The velocity,temperature and thermo-physical properties of cryogenic methane were analyzed. The results show that the bigger the heat flux is,the earlier the heat transfer enhancement behavior happens; and the faster the heat transfer deterioration changes,the bigger the peak and the valley values are. There are different heat transfer coefficients between the top and bottom of the horizontal tube,while the heat transfer coefficients are symmetrically distributed in the vertical tube. The buoyancy induced by density differences enhances the heat transfer when a big specific heat exits in the layer; while the thermal acceleration effects induced by the density difference deteriorated the heat transfer when the specific heat recovers the normal value in the thermal layer.
引文
[1] HUANG D,WU Z,SUNDEN B,et al. A brief review on convection heat transfer of fluids at supercritical pressures in tubes and the recent process[J]. Applied Energy,2016,162:494-505.
    [2] BRINGER R P,SMITH F M. Heat transfer in critical region[J].AICHE,1957,3(1):49-55.
    [3]王博杰,匡以武,齐超,等.中间介质气化器中超临界LNG换热过程分析[J].化工学报,2015,66(增2):220-225.WANG Bojie,KUANG Yiwu,QI Chao,et al. Analysis of heat transfer to supercritical LNG in intermediate fluid vaporizer[J].CIESC Journal,2015,66(sup2):220-225.
    [4]贾丹丹,赵忠超,张永,等.超临界LNG在印刷板式汽化器微细流道内的流动与换热性能数值研究[J].船舶工程,2017,39(5):35-40.JIA Dandan,ZHAO Zhongchao,ZHANG Yong,et al.Numerical study of flow and heat transfer characteristics of supercritical LNG in micro-channel of printed circuit vaporizer[J].Ship Engineering,2017,39(5):35-40.
    [5]张康,韩昌亮,任婧杰,等.SCV蛇形换热管内超临界LNG传热特性数值模拟[J].化工学报,2015,66(12):4788-4795.ZHANG Kang,HAN Changliang,REN Jingjie,et al.Numerical simulation on heat transfer of supercritical LNG in coil tubes of submerged combustion vaporizer[J]. CIESC Journal,2015,66(12):4788-4795.
    [6]王亚洲,华益新,孟华.超临界压力下低温甲烷的湍流传热数值研究[J].推进技术,2010,31(4):606-611.WANG Yazhou,HUA Yixin,MENG Hua. Numerical investigation of turbulent heat transfer of cryogenic-propellant methane under supercritical pressures[J]. Journal of Propulsion Technology,2010,31(4):606-611.
    [7]李仲珍,郭少龙,陶文铨.超临界LNG管内流动与换热特性的研究[J].工程热物理学报,2013,34(12):2314-2317.LI Zhongzhen,GUO Shaolong,TAO Wenquan. Studies of supercritical convective heat transfer of LNG in Tube[J].Journal of Engineering Thermodynamics,2013,34(12):2314-2317.
    [8]李玮哲,林文胜.超临界甲烷在印刷电路板换热器中加热工程模拟[J].低温工程,2017,219(5):60-64.LI Weizhe, LIN Wensheng, Numerical simulation of heating process of supercritical methane in printed circuit heat exchanger[J].Cryogenics,2017,219(5):60-64.
    [9] GU Hongfang,LI Hongzhi,WANG Haijun,et al. Experimental investigation on convective heat transfer from horizontal miniature tube to methane at supercritical pressures[J]. Applied Thermal Engineering,2013,58:490-498.
    [10]郭占魁,忻晔晨,李凌.超临界甲烷在竖直圆管内加热的数值模拟[J].上海理工大学学报,2017,39(1):30-34.GUO Zhankui,XIN Yechen,LI Ling. Numerical simulation on supercritical methane in a heating vertical circular tube[J]. Journal University of Shanghai for Science and Technology,2017,39(1):30-34.
    [11] ZHANG Qian,LI Huixiong,KONG Xiangfei,et al.Special heat transfer characteristics of supercritical CO2flowing in a vertically-upward tube with low mass flux[J]. International Journal of Heat and Mass Transfer,2018,122(1):469-482.
    [12] JIANG Peixue,ZHANG Yu,SHI Ruifu. Experimental and numerical investigation of convection heat transfer of CO2at supercritical pressures in a vertical mini-tube[J]. International Journal of Heat and Mass Transfer,2008,51:3052-3056.
    [13] YOON S H,KIM J H,HWANG Y W,et al. Heat transfer and pressure drop characteristics during the intube cooling process of carbon dioxide in the supercritical region[J]. International Journal of Refrigeration,2003,26:857-864.
    [14] XU Ruina,LUO Feng,JIANG Peixue. Buoyancy effects on turbulent heat transfer of supercritical CO2in a vertical mini-tube based on continuous wall temperature measurements[J]. International Journal of Heat and Mass Transfer. 2017,110(3):576-586.
    [15]曲默丰,梁梓宇,赵云杰,等.低质量流速管光管内超超临界水传热特性的实验与数值模拟[J].西安交大大学学报,2018,52(7):52-58.QU Mofeng,LIANG Ziyu,ZHAO Yunjie,et al. Experimental and numerical investigation on heat transfer of ultra-supercritical water in the smooth tube with low mass flux[J]. Journal of Xian Jiaotong University,2018,52(7):52-58.
    [16]任韶然,崔国栋,李德祥,等.注超临界CO2开采高温废弃气藏地热机制与采热能力分析[J].中国石油大学学报(自然科学版),2016,40(2):91-98.REN Shaoran,CUI Guodong,LI Dexiang,et al. Development of geothermal energy from depleted high temperature gas reservoir via supercritical CO2injection[J].Journal of China University of Petroleum(Edition of Natural Science),2016,40(2):91-98.
    [17] YANG Chuanyong,XU Jinliang,WANG Xiaodong,et al. Mixed convective flow and heat transfer of supercritical CO2in circular tubes at various inclination angles[J]. International Journal of Heat and Mass Transfer,2013,64:212-223.
    [18]浦航,李素芬,东明,等.超临界压力RP-3起始加热段传热恶化数值模拟[J].工程热物理学报,2017,10(39):2242-2247.PU Hang,LI Sufen,DONG Ming,et al. Numerical study on heat transfer deterioration in the initial heating region of RP-3 under supercritical pressure[J].Journal of Engineering Thermophysics,2017,10(39):2242-2247.
    [19]刘占斌,费继友,杨一凡,等.管径对超临界CO2管内流动换热的影响研究[J].工程热物理学报,2016,37(2):357-360.LIU Zhanbin,FEI Jiyou,YANG Yifan,et al. Numerical study on the effect of diameter on supercritical CO2heat transfer and flow in horizontal tubes[J].Journal of Engineering Thermodynamics,2016,37(2):357-360.
    [20] PITAL S S,GROLL E,RAMADHYANI S. New correlation to predict the heat transfer of coefficient during intube cooling of turbulent supercritical CO2[J].International Journal of Refrigeration,2002,25:887-895.
    [21]朱红钧.ANSYS14. 5热流固耦合实战指南[M].北京:人民邮电出版社出版社,2014.
    [22] YAKHOT V,SMITH L M. The renormalization group,theε-expansion and derivation of turbulence models[J].Journal of Scientific Computing,1992,7(1):35-61.
    [23] HE S,JIANG Peixue,XU Yijun,et al. Experimental and numerical study of convection heat transfer of CO2at super-critical pressures during cooling in small vertical tube[J]. International Journal of Thermal Science,2005,44(6):521-530.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700