激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress in Preparation of Hard Phase Reinforced Ni-based Alloy Composite Coating by Laser Cladding
  • 作者:平学龙 ; 符寒光 ; 孙淑婷
  • 英文作者:PING Xuelong;FU Hanguang;SUN Shuting;School of Materials Science and Engineering,Beijing University of Technology;
  • 关键词:激光熔覆 ; 镍基合金 ; 显微组织 ; 力学性能
  • 英文关键词:laser cladding;;Ni-based alloy;;microstructure;;mechanical property
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:北京工业大学材料科学与工程学院;
  • 出版日期:2019-05-10
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 基金:国家自然科学基金(51775006)~~
  • 语种:中文;
  • 页:CLDB201909017
  • 页数:6
  • CN:09
  • ISSN:50-1078/TB
  • 分类号:111-116
摘要
为了满足不同的工况,许多工程部件需具备良好的表面性能,例如:较高的硬度、良好的耐磨性能和耐腐蚀性能等。可以通过在普通材料表面熔覆合金粉末来达到改善表面性能的效果。激光熔覆制备的涂层具有优良的附着力、良好的微观结构、较小的热影响区和优异的力学性能等特点。常用的激光熔覆方法主要包括预置法和同步送粉法。常用的熔覆材料主要分为三个体系,即:Fe基、Co基和Ni基。Fe基粉末制备的涂层具有较高的硬度和较好的耐磨性,并且价格较为便宜。但是,Fe基涂层在制备过程中容易出现较多的缺陷,从而导致涂层的性能和可靠性下降。Co基涂层具有良好的耐高温性和耐腐蚀性,但是力学性能较差,价格极为昂贵,不适用于大范围的工业生产。Ni基涂层具有较好的耐磨性能、良好的韧性和较好的润湿性能,价格较为经济,有广阔的应用前景。近年来,许多研究人员专注于Ni基涂层强化的研究。目前,常用的Ni基涂层的强化方法主要包括调整激光熔覆的工艺参数和向Ni基涂层中加入硬质相或适当的元素来改善涂层的性能。很多研究人员专注于改善Ni基合金粉末的成分,即向Ni基粉末中加入硬质相或者合适的元素来提高Ni基涂层的性能。向Ni基涂层中加入的主要硬质相颗粒包括WC、NbC、TiC、TaC和VC等。一些研究人员通过加入化合物合成元素,在激光熔覆的过程中通过原位反应的方法来生成一些碳化物强化相。比如:通过加入纯Nb粉或Nb2O5与石墨粉原位生成NbC;加入纯Ti粉和石墨粉原位反应生成TiC。一些研究人员通过添加某单一元素来提高涂层的性能,如:Nb、Ti、Al、Ta等。此外,还有一些学者研究了稀土元素对涂层性能的影响。激光熔覆方法制备的Ni基合金涂层具有较高的结合强度、较好的耐腐蚀性和优异的耐磨性,在工程上具有广阔的应用前景。改进合金粉末的成分,可以进一步提高涂层的力学性能。本文综述了硬质颗粒增强镍基合金复合涂层的研究进展,指出了硬质颗粒增强镍基合金涂层需进一步解决的问题,并展望了其应用前景。
        For the sake of satisfying diverse service conditions,many engineering components should be equipped with excellent surface properties,such as high hardness,good wear resistance and corrosion resistance. Ordinary metal material can achieve improved surface properties by cladding the alloy powders on its surface. The laser cladded coating holds favorable adhesion property,excellent microstructure,small heat affected zone and outstanding mechanical properties. The commonly used laser cladding approaches primarily include preset powder method and synchronous powder feeding.The common cladding materials are mainly divided into three categories,namely Fe,Co and Ni based. The Fe-based coatings feature high hardness and wear resistance,and lower price as well. Nevertheless,the Fe-based coating is prone to produce defects during the preparation process,resulting in the decline in performance and reliability of the coating. Co-based coatings hold excellent high temperature resistance and corrosion resistance,yet their mechanical properties are poor and the price is extremely high,which seriously blocks their widespread application in industry. Ni-based coatings possess excellent wear resistance,good toughness and wettability,and their production cost is relatively economical,which show broad application prospects. In recent years,great efforts have been put into the research of Ni-based coating.At present,the commonly used approach for strengthening Ni based coatings include adjusting the process parameters of laser cladding and adding hard phases or appropriate elements to the Ni based coatings. Many researchers have concentrated on optimizing the composition of Nibased alloy powders,that is,adding hard phases or appropriate elements to Ni based powders to enhance the properties of the Ni coating. The major hard phase particles added to Ni based coatings include WC,Nb C,TiC,TaC and VC. Attempts that adding certain compound elements to assist the generation of reinforcing phases in laser cladding process by in-situ reaction have been made by researchers. For instance,the addition of pure Nb powder( or Nb2 O5) and graphite powder contribute to generate Nb C,the addition of pure Ti powder and graphite powder is conducive for the formation of TiC by in-situ reaction. Some researchers have tried to introduce a single element including Nb,Ti,Al,Ta and so on,in order to improve the performance of the coating. Besides,the effect of rare earth elements on the properties of coatings have been explored as well.Ni-based alloy coating prepared by laser cladding are endowed with high bonding strength,excellent corrosion resistance and wear resistance,exhibiting a broad application prospect in engineering. The mechanical properties of the coatings can be further enhanced by improving the composition of the alloy powders. In this article,the research progress of hard particle reinforced Ni-based alloy composite coatings is reviewed. The problems that need to be solved for the hard particle-reinforced nickel-based alloy coatings are pointed out,and the prospects of the research are also discussed.
引文
1 Sharma S P,Dwivedi D K,Jain P K.Wear,2009,267(5-8),853.
    2 Chaliampalias D,Vourlias G,Pavlidou E,et al.Surface Science,2009,255(6),3605.
    3 Zhang J,Hu Y,Tan X J,et al.Chinese Journal of Nonferrous Metals,2015,25(5),1525.
    4 Wang P Z,Qu J X,Shao H S,et al.Materials and Design,1996,17(5-6),289.
    5 Bansal A,Zafar S,Sharma A K,et al.Journal of Materials Engineering and Performance,2015,24(10),1.
    6 Wang S L,Zhang Z Y,Gong Y B,et al.Journal of Alloys and Compounds,2017,728,1116.
    7 Quazi M M,Fazal M A,Haseeb A S M A,et al.Journal of Rare Earths,2016,34(6),550.
    8 Paul C P,Mishra S K,Tiwari P,et al.Optics and Laser Technology,2013,50,155.
    9 Ortiz A,García A,Cadenas M,et al.Surface and Coatings Technology,2017,324,298.
    10 Ma Q S,Li Y J,Wang J,et al.Journal of Alloys and Compounds,2015,645,151.
    11 Tobar M J,álvarez C,Amado J M,et al.Surface and Coatings Technology,2006,200,6313.
    12 Guo C,Chen J M,Zhou J S,et al.Surface and Coatings Technology,2012,206,2064.
    13 Zhou S F,Lei J B,Dai X Q,et al.International Journal of Refractory Metals and Hard Materials,2017,64,234.
    14 Li F Q,Feng X Y,Chen Y B.Chinese Journal of Lasers,2016,43(4),0403009-1(in Chinese).李福泉,冯鑫友,陈彦宾.中国激光,2016,43(4),0403009-1.
    15 Zang C C,Wang Y Y,Zhang Y D,et al.Rare Metal,2019,39(5),385(in Chinese).臧春城,王延忠,张以都,等.稀有金属,2019,39(5),385.
    16 Matthews S,James B,Hyland M.Surface and Coatings Technology,2013,70,203.
    17 Lou D Y,He C L,Shang S,et al.Materials Letters,2013,93,304.
    18 Yu J,Zhu L,Luo L M,et al.Hot Working Technology,2010,39(6),86(in Chinese).俞佳,朱流,罗来马,等.热加工工艺,2010,39(6),86.
    19 Zhang D W,Lei T C,Li F J.Wear,2001,251,1372.
    20 Zhang D W,Lei T C.Wear,2003,255(1-6),129.
    21 Zhang D W,Zhang X P.Surface and Coatings Technology,2005,190(2),212.
    22 Wilson J M,Shin Y C.Surface and Coatings Technology,2017,207(9),517.
    23 Jiang D,Hong C,Zhong M,et al.Surface and Coatings Technology,2014,249(7),125.
    24 Shen M Y,Tian X J,Liu D,et al.Journal of Alloys and Compounds,2018,734,188.
    25 Xu X,Mi G Y,Xiong L D,et al.Journal of Alloys and Compounds,2018,740,16.
    26 Ikeno S,Furuta K,Matsuda K J.Journal of Japan Institute of Light Metals,1995,45(5),249.
    27 Chao M J,Niu X,Yuan B,et al.Surface and Coatings Technology,2006,201,1102.
    28 Rajab F H,Liu Z,Li L.Applied Surface Science,2018,427,1135.
    29 Lu W J,Zhang D,Zhang X N,et al.Materials Science and Engineering A,2001,311,142.
    30 Du J N,Dong G,Deng Q L,et al.Applied Laser,2012(4),277(in Chinese).杜竞楠,董刚,邓琦林,等.应用激光,2012(4),277.
    31 Niu X,Chao M J,Wang W L,et al.Chinese Journal of Lasers,2006,33(7),987.
    32 Cao Y B,Zhi S X,Gao Q,et al.Materials Characterization,2016,119,159.
    33 Wu X L.Surface and Coatings Technology,1999,115,111.
    34 Chao M J,Wang W L,Liang E J,et al.Surface and Coatings Technology,2008,202(10),1918.
    35 Moghaddam E G,Karimzadeh N,Varahram N,et al.Materials Science and Engineering A,2013,585(22),422.
    36 Zhao G L,Huang C Z,Liu H L,et al.International Journal of Refractory Metals and Hard Materials,2013,36,122.
    37 Wang Z T,Zhou X H,Zhao G G.Transactions of Nonferrous Metals Society of China,2008,18(4),831.
    38 Li M,Huang J,Zhu Y Y,et al.Surface and Coatings Technology,2012,206(19-20),4021.
    39 Liu K,Li Y J,Wang J,et al.Materials and Design,2015,87,66.
    40 Wu W T,Zhang Y,Song B H.Journal of Shijiazhuang Tiedao University,2017,30(2),105(in Chinese).吴文涛,张洋,宋博瀚.石家庄铁道大学学报(自然科学版),2017,30(2),105.
    41 Cheng Y,Dong G,Chen G X,et al.Materials for Mechanical Enginee-ring,2014,38(9),24(in Chinese).成阳,董刚,陈国喜,等.机械工程材料,2014,38(9),24.
    42 Hu Y L,Lin X,Yu X B,et al.Journal of Alloys and Compounds,2017,711,267.
    43 Ma Q S,Li Y J,Wang J.International Journal of Refractory Metals and Hard Materials,2017,64,225.
    44 Yang L Q,Li Z Y,Zhang Y Q,et al.Applied Surface Science,2018,435,1187.
    45 Xiang H,Xu Y,Zhang L,et al.Scripta Materialia,2006,55(4),339.
    46 Yu T,Deng Q L,Dong G,et al.Applied Surface Science,2011,257,5098.
    47 Zhao N,Tao L,Guo H,et al.Rare Metal Materials and Engineering,2017,46(8),2092.
    48 Wang C L,Gao Y,Zeng Z C,et al.Journal of Alloys and Compounds,2017,727,278.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700