一级半轴流涡轮非轴对称端壁的优化设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Optimization Design of Non-axisymmetric Endwall Profiling in a 1.5-stage Axial Turbine
  • 作者:吕伟利 ; 杨爱明
  • 英文作者:L Weili;YANG Aiming;Department of Aeronautics and Astronautics,Fudan University;
  • 关键词:轴流涡轮 ; 优化设计 ; 遗传算法 ; 非轴对称端壁
  • 英文关键词:axial turbine;;optimization design;;genetic algorithms;;non-axisymmetric endwall
  • 中文刊名:FDXB
  • 英文刊名:Journal of Fudan University(Natural Science)
  • 机构:复旦大学航空航天系;
  • 出版日期:2018-12-13
  • 出版单位:复旦学报(自然科学版)
  • 年:2018
  • 期:v.57
  • 基金:上海市商用航空发动机领域联合创新计划(AR909)
  • 语种:中文;
  • 页:FDXB201806005
  • 页数:7
  • CN:06
  • ISSN:31-1330/N
  • 分类号:48-54
摘要
建立了一套适用于轴流涡轮非轴对称端壁的优化系统,该系统主要基于人工神经网络方法和遗传算法.为了降低高维优化设计的计算规模,采用了设计空间分区方法,结合D-最优试验设计方法建立计算样本数据库;使用人工神经网络方法建立代理模型,以等熵效率为优化目标函数,优化方法为遗传算法.采用上述优化策略对Aachen一级半涡轮进行优化设计,端壁布置了25个控制点,数据库样本规模为300,优化后等熵效率增加了0.43%.计算结果表明:采用空间分区方法在保持足够代理模型精度的同时,可以降低样本数据库的规模,并且在试验设计方法选择时带来更多的灵活性.另外,非轴对称端壁造型在静叶上的应用效果相较于动叶要好,且在第二级静叶的应用效果最佳.
        An optimization design method based on genetic algorithms and artificial neural networks(ANN)is developed to improve the performance of non-axisymmetric endwall profiling,which has been proved to be an effective method to control the secondary flows and improve flow structures of turbomachinery.For a 1.5-stage axial turbine,aparameterized model of non-axisymmetric endwall with 25 control points on the hub is established,the surrogate model is built using subspace strategy,D-optimal experimental design method and ANN model with a database of 300 samples.The isentropic efficiency is selected as optimal objective,and genetic algorithms is chosen as the optimization algorithm.The total-to-total isentropic efficiency of the turbine increase about 0.43%after optimization.The results show that the subspace strategy used to build the database brings more flexibility and indicated that the non-axisymmetric endwall contouring has a significant influence on stators than rotors.
引文
[1] DENTON J D.Loss mechanisms in turbomachines[J].Journal of Turbomachinery,1993,115(4):621-656.
    [2] GREGORY-SMITH D G,INGRAM G,JAYARAMAN P,et al.Non-axisymmetric turbine endwall profiling[J].Proceedings of the Institution of Mechanical Engineers,Part A:Journal of Power and Energy,2001,215(6):721-734.
    [3] INGRAM G L,Endwall profiling for the reduction of secondary flow in turbines[D].Durham,UK:Durham University,2003.
    [4] HARVEY N W,BRENNAN G,NEWMAN D A,et al.Improving turbine efficiency using nonaxisymmetric end walls:Validation in the multi-row environment and with low aspect ratio blading[C]∥ASME Turbo Expo 2002:Power for Land,Sea,and Air.Amsterdam,Netherlands:American Society of Mechanical Engineers,2002:ASME Turbo Expo 2002-GT-30337.
    [5] ROSE M G.Non-axisymmetric endwall profiling in HP NGV’s of an axial flow gas turbine[C]∥ASME International Gas Turbine and Aeroengine Congress and Exposition.Hague,Netherlands:American Society of Mechanical Engineers,1994:ASME Turbo Expo 94-GT-249.
    [6] BRENNAN G,HARVEY N W,ROSE M G,et al.Improving the efficiency of the Trent 500HP turbine using non-axisymmetric end walls:PartⅠ—turbine design[C]∥ASME Turbo Expo 2001:Power for Land,Sea,and Air.New Orleans,Louisiana,USA:American Society of Mechanical Engineers,2001:ASME Turbo Expo 2001-GT-0444.
    [7] ROSE M G,HARVEY N W,SEAMAN P,et al.Improving the efficiency of the Trent 500HP turbine using non-axisymmetric end walls:PartⅡ—experimental validation[C]∥ASME Turbo Expo 2001:Power for Land,Sea,and Air.New Orleans,Louisiana,USA:American Society of Mechanical Engineers,2001:ASME Turbo Expo 2001-GT-0505.
    [8] POEHLER T,NIEWOEHNER J,JESCHKE P,et al.Investigation of non-axisymmetric endwall contouring and 3Dairfoil design in a 1.5stage axial turbine:PartⅠ—design and novel numerical analysis method[C]∥ASME Turbo Expo 2014:Turbine Technical Conference and Exposition.Düsseldorf,Germany:American Society of Mechanical Engineers,2014:ASME Turbo Expo GT-2014-26784.
    [9] SNEDDEN G C,The application of non-axisymmetric endwall contouring in a 1-1/2stage,rotating turbine[D].Durham,UK:Durham University,2011.
    [10]李国君,马晓永,李军.非轴对称端壁成型及其对叶栅损失影响的数值研究[J].西安交通大学学报,2005,39(11):1169-1172.
    [11]高增珣,高学林,袁新.透平叶栅非轴对称端壁的气动最优化设计[J].工程热物理学报,2007,28(4):589-591.
    [12]张鹏,刘波,曹志远,等.对转压气机非轴对称端壁造型优化设计[J].航空动力学报,2014,29(11):2570-2578.
    [13]唐慧敏,刘帅强,罗华玲.涡轮平面叶栅非轴对称端壁优化设计[J].航空动力学报,2015,30(3):707-713.
    [14]李恩颖.近似模型优化体系关键技术研究及应用[D].长沙:湖南大学,2009.
    [15] GALLUS H E,WALRAEVENS R E.Stator-rotor-stator interaction in an axial flow turbine and its influence on loss mechanism[C]∥AGARD Conference Proceedings of Propulsion and Energetics Panel(PEP)85th Symposium.Derby,UK:AGARD,1995:AGARD-CP-571.
    [16] JAMESON A,SCHMIDT W,TURKEL E.Numerical solution of the Euler equations by finite volume methods using Runge-Kutta time stepping schemes[C]∥14th AIAA Fluid and Plasma Dynamics Conference.Palo Alto,California,USA:AIAA,1981:AIAA paper 1981-1259.
    [17] SPALART P,ALLMARAS S.A one-equation turbulence model for aerodynamic flows[J].La Recherche Aérospatiale,1992,439(1):5-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700