挥发性环甲基硅氧烷的长距离迁移及总持久性模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation of Long-Range Transport Potential and Overall Persistence of Cyclic Volatile Methylsiloxanes
  • 作者:赵梦可 ; 胡建信
  • 英文作者:ZHAO Mengke;HU Jianxin;College of Environmental Sciences and Engineering,Peking University;
  • 关键词:挥发性环甲基硅氧烷 ; TaPL3模型 ; 长距离迁移 ; 总持久性
  • 英文关键词:cyclic volatile methylsiloxanes;;TaPL3 model;;long-range transport;;overall persistence
  • 中文刊名:HJKX
  • 英文刊名:Research of Environmental Sciences
  • 机构:北京大学环境科学与工程学院;
  • 出版日期:2018-06-11 11:45
  • 出版单位:环境科学研究
  • 年:2018
  • 期:v.31;No.249
  • 语种:中文;
  • 页:HJKX201810007
  • 页数:7
  • CN:10
  • ISSN:11-1827/X
  • 分类号:61-67
摘要
c VMS (挥发性环甲基硅氧烷)的环境和健康效应近年来受到广泛关注.运用Ta PL3模型探究了D4 (八甲基环四硅氧烷)、D5 (十甲基环五硅氧烷)和D6 (十二甲基环六硅氧烷) 3种c VMS在哈尔滨市、天津市和广州市3个城市环境下的长距离迁移性和持久性,并分别用CTD (特征迁移距离)和Pov (总持久性)表征;同时,通过灵敏度分析筛选模型中的关键参数.结果表明:(1)D4~D6的CTDair(大气中CDT)范围为359~998 km,随c VMS分子量的增大而减小; Povwater(水体中Pov)范围为10~34 d,区域和物质差异均不大. CTDwater(水体中CDT)的范围为328~4 383 km且D4哈尔滨市>广州市外,其余各值均为哈尔滨市>天津市>广州市,体现出环境参数对于模拟结果具有一定的影响;而CTD与Pov之间并无直接关系.(3)对于排放到大气的c VMS而言,对CTDair影响最大的参数是空气中的半衰期和风速,对Povair影响最大的是空气中的半衰期;对于排放到水体的c VMS而言,对CTDwater影响最大的是lg KOW(辛醇-水分配系数的对数),而对Povwater(水体中Pov)影响最大的是环境温度.(4)对于同一物质在不同环境中的模拟,其结果可能存在一定差异,因此在进行决策时要考虑环境因素.研究显示,c VMS具有中等的长距离迁移潜力,其全球尺度环境风险值得引起关注.
        Cyclic volatile methylsiloxanes(c VMS) are of concern due to their adverse effects on the environment and human health.Here,the researchers used the Ta PL3(the Transport and Persistence Level III) model to evaluate the characteristic travel distance(CTD) and overall persistence(Pov) of three main c VMS,i.e,octamethylcyclotetrasiloxane(D4),decamethylcyclopentasiloxane(D5)and dodecamethylcyclohexasiloxane(D6) in the air and water of three Chinese cities(Harbin,Tianjin and Guangzhou). The results were as follows:(1) In air,the estimated CTD(359-998 km) decreased with increasing molecular weight,whereas the estimated Pov(10-34 d) differed little between cities and substances. By contrast,in water,the estimated CTD(328-4,383 km) increased with increasing molecular weight,whereas the estimated Pov(276-44,802 d) increased with increasing molecular weight.(2) All CTD and Pov estimates,except for the CTD through air,were highest in the Harbin environment,followed by the Tianjin and Guangzhou environments.Furthermore,the CTD and Pov estimates were not related to each other.(3) The most influential parameters in air were identified as wind velocity for CTD and half-life in the air for both CTD and Pov and in water as logarithmic octanol-water partition coefficients and ambient temperatures for both indices. The results and the mechanisms of this modelling system were discussed carefully.(4) For the same chemical,estimates varied among different environments. The researchers suggested that attention must be paid to the situations of diverse environments while making scientific decisions. The study suggested that cVMS demonstrated an intermediate potential to long-range transport,which highlighted the need for further in-depth investigations in the future.
引文
[1] FLANINGAM O L. Vapor pressures of poly(dimethylsiloxane)oligomers[J]. Journal of Chemical&Engineering Data,1986,31(3):266-272.
    [2] VARAPRATH S,FRYE C L,HAMELINK J L. Aqueous solubility of permethylsiloxanes(silicones)[J]. Environmental Toxicology and Chemistry,1996,15(8):1263-1265.
    [3] XU Shihe,KROPSCOTT B.Method for simultaneous determination of partition coefficients for cyclic volatile methylsiloxanes and dimethylsilanediol[J]. Analytical Chemistry,2012,84(4):1948-1955.
    [4] Environment Canada and Health Canada.Screening assessment for the challenge octamethylcyclotetrasiloxane(D4)[R]. Ottawa:Environment Canada and Health Canada,2008:1-90.
    [5] Environment Canada and Health Canada.Screening assessment for the challenge decamethylcyclopentasiloxane(D5)[R]. Ottawa:Environment Canada and Health Canada,2008:1-97.
    [6] Environment Canada and Health Canada.Screening assessment for the challenge dodecamethylcyclohexasiloxane(D6)[R]. Ottawa:Environment Canada and Health Canada,2008:1-83.
    [7] USEPA. Enforceable consent agreement for environmental testing for octamethylcyclotetra-siloxane(D4)[EB/OL]. Washington DC:US EPA,2014-02-06[2017-12-30]. https://www. epa. gov/sites/production/files/2015-01/documents/signed_siloxanes_eca_4-2-14.pdf.
    [8] XU Shihe,WANIA F. Chemical fate,latitudinal distribution and long-range transport of cyclic volatile methylsiloxanes in the global environment:a modeling assessment[J]. Chemosphere,2013,93(5):835-843.
    [9] MACKAY D,POWELL D E,WOODBURN K B. Bioconcentration and aquatic toxicity of superhydrophobic chemicals:a modeling case study of cyclic volatile methyl siloxanes[J].Environmental Science&Technology,2015,49(19):11913-11922.
    [10] ECHA(European Chemicals Agency). D5 PBT/vPvB evaluation[EB/OL]. Helsinki:ECHA,2013-04-03[2017-12-30]. https://echa. europa. eu/documents/10162/13628/decamethyl_pbtsheet_en.pdf.
    [11] EU(European Union).Official journal of the European Union[EB/OL].Brussel:European Commission,2018-01-11[2018-01-17]. https://eur-lex. europa. eu/legal-content/EN/TXT/PDF/? uri=CELEX:32018R0035&from=EN.
    [12] XU Lin,SHI Yali,CAI Yaqi. Occurrence and fate of volatile siloxanes in a municipal wastewater treatment plant of Beijing,China[J].Water Research,2013,47(2):715-724.
    [13] WHELAN M J,BREIVIK K.Dynamic modelling of aquatic exposure and pelagic food chain transfer of cyclic volatile methylsiloxanes in the Inner Oslofjord[J].Chemosphere,2013,93(5):794-804.
    [14] GENUALDI S,HARNER T,CHENG Y,et al.Global distribution of linear and cyclic volatile methyl siloxanes in air[J].Environmental Science&Technology,2011,45(8):3349-3354.
    [15] LU Yan,YUAN Tao,YUN Sehun,et al. Occurrence of cyclic and linear siloxanes in indoor dust from China,and implications for human exposures[J]. Environmental Science&Technology,2010,44(16):6081-6087.
    [16] COMPANIONIDAMAS E Y,SANTOS F J,GALCERAN M T.Analysis of linear and cyclic methylsiloxanes in water by headspace-solid phase microextraction and gas chromatographymass spectrometry[J].Talanta,2012,89:63-69.
    [17] ZHANG Zifeng,QI Hong,REN Nanqi,et al. Survey of cyclic and linear siloxanes in sediment from the songhua river and in sewage sludge from wastewater treatment plants,northeastern China[J].Archives of Environmental Contamination&Toxicology,2011,60(2):204-211.
    [18] KIERKEGAARD A,ADOLFSSONERICI M,MCLACHLAN M S.Determination of cyclic volatile methylsiloxanes in biota with a purge and trap method[J]. Analytical Chemistry,2010,82(22):9573-9578.
    [19] KROGSETH I S,KIERKEGAARD A,MCLACHLAN M S,et al.Occurrence and seasonality of cyclic volatile methyl siloxanes in arctic air[J].Environmental Science&Technology,2013,47(1):502-509.
    [20] WANIA F,MACKAY D. Tracking the distribution of persistent organic pollutants[J].Environmental Science&Technology,1996,30(9):390-396.
    [21] WEGMANN F,CAVIN L,MACLEOD M,et al.The OECD software tool for screening chemicals for persistence and long-range transport potential[J]. Environmental Modelling&Software,2009,24(2):228-237.
    [22] BEYER A,MACKAY D,MATTHIES M,et al.Assessing long-range transport potential of persistent organic pollutants[J].Environmental Science&Technology,2000,34(4):699-703.
    [23]麦凯.环境多介质模型:逸度方法[M].北京:化学工业出版社,2007:14-51.
    [24] WEBSTER E,MACKAY D,WANIA F. Evaluating environmental persistence[J]. Environmental Toxicology&Chemistry,1998,17(11):2148-2158.
    [25] JIMNEZ E,BALLESTEROS B,MARTNEZ E,et al.Tropospheric reaction of OH with selected linear ketones:kinetic studies between228 and 405 K[J]. Environmental Science&Technology,2005,39(3):814-820.
    [26] LEI Y D,WANIA F,DAN M. Temperature-dependent vapor pressure of selected cyclic and linear polydimethylsiloxane oligomers[J]. Journal of Chemical&Engineering Data,2010,55(12):5868-5873.
    [27] MINTZ C,BURTON K,LADLIE T,et al. Enthalpy of solvation correlations for gaseous solutes dissolved in dibutyl ether and ethyl acetate[J].Thermochimica Acta,2008,470(1):67-76.
    [28]国家气象信息中心.中国气象科学数据共享服务网:中国地面国际交换站气候资料月值数据集[EB/OL].北京:国家气象信息中心,2017-12-30[2017-12-30]. http://data. cma. cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_MON.html.
    [29]王宣同.基于长距离传输潜力的杀虫剂类POPs毒性潜力研究:以DDT为例[D].北京:北京大学,2005:47-55.
    [30] CAO Hongying,TAO Shu,XU Fuliu,et al. Multimedia fate model for hexachlorocyclohexane in Tianjin,China[J]. Environmental Science&Technology,2004,38(7):2126-2132.
    [31]天津市统计局.2003天津统计年鉴[M].北京:中国统计出版社,2004.
    [32]广州市地方志编纂委员会.广州市志(卷二)[M].广州:广州出版社,1998.
    [33]王喜龙,徐福留,王学军,等.天津污灌区苯并[a]芘的分布和迁移通量模型[J].环境科学学报,2003,23(1):88-93.WANG Xilong,XU Fuliu,WANG Xuejun,et al. Fugacity modeling of benzo(a)pyrene in wastewater irrigated area of Tianjin[J].Acta Sciientiae Circumstantiae,2003,23(1):88-93.
    [34]崔晓宇,张鸿,罗骥,等.深圳地区全氟辛烷磺酸的环境多介质迁移和归趋行为研究[J].环境科学,2016,37(8):3001-3006.CUI Xiaoyu,ZHANG Hong,LUO Ji,et al.Simulation of multimedia transfer and fate of perfluorooctane sulfonate(PFOS)in Shenzhen region[J].Environmental Science,2016,37(8):3001-3006.
    [35]李全林.利用多介质逸度模型研究天津、太湖地区DDTs环境归宿[D].北京:北京大学,2004:43-45.
    [36]袁嘉祖,谷建才,陆贵巧,等.中国大陆环境污染聚类分区及林业对策[J].河北林学院学报,1996(1):13-24.
    [37] MORGAN M G,HENRION M.Uncertainty:a guide to dealing with uncertainty in quantitative risk and policy analysis[M].Cambridge:Cambridge University Press,1992:172-192.
    [38] MACKAY D,COWAN-ELLSBERRY C E,POWELL D E,et al.Decamethylcyclopentasiloxane(D5)environmental sources,fate,transport,and routes of exposure[J]. Environmental Toxicology&Chemistry,2015,34(12):2689-2702.
    [39]任婷,马祥林,杨志群,等.兰州地区典型有机污染物长距离迁移及其总持久性模拟[J].环境科学研究,2010,23(1):62-67.REN Ting,MA Xianglin,YANG Zhiqun,et al. Simulation of longrange transport and overall persistence of typical organic pollutants in Lanzhou Area[J]. Research of Environmental Sciences,2010,23(1):62-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700