镁纳米颗粒烧结过程的分子动力学模拟研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Molecular dynamics simulation of Mg nanoparticles sintering processes
  • 作者:Bembalee ; Lamineousmane
  • 英文作者:Bembalee Lamineousmane;School of Power and Mechanical Engineering, Wuhan University;
  • 关键词:烧结 ; 模拟 ; 微纳颗粒
  • 英文关键词:sintering;;simulation;;nanoparticles
  • 中文刊名:WSDD
  • 英文刊名:Engineering Journal of Wuhan University
  • 机构:武汉大学动力与机械学院;
  • 出版日期:2019-05-15
  • 出版单位:武汉大学学报(工学版)
  • 年:2019
  • 期:v.52;No.266
  • 语种:中文;
  • 页:WSDD201905014
  • 页数:6
  • CN:05
  • ISSN:42-1675/T
  • 分类号:92-97
摘要
激光烧结制镁是目前从含镁化合物中提取镁元素的一种重要方法.利用分子动力学模拟来研究纳米颗粒烧结过程和机制,通过在300~900℃范围内在不同温度下烧结的活性纯镁的特性与变形过程的模拟,对添加纯镁粉的烧结生产工艺进行了研究.已知镁熔点为650 K,研究发现在终点温度为650、700、750、800 K时用分子动力学来模拟Mg纳米颗粒的烧结研究达不到模拟的成功率,终点温度为850、900、950和1 000 K时模拟才能成功,在烧结过程中可以产生更高的加热速率,从而有效提高了烧结材料的机械强度.
        Laser sintering magnesium is an important method for the extraction of magnesium from magnesium compounds. In this study, molecular dynamics simulations are used to study the sintering process and mechanism of nanoparticles. The properties of active magnesium sintered at different temperatures in the range of 300-900 ℃ are simulated with the deformation process. The sintering production process of adding pure magnesium powder is studied. The melting point of magnesium resources is known to be 650 K, in order to ensure the success rate of this study simulation we found that the molecular dynamics simulation was not successful at the following terminal tempatures at 650 K,700 K,750 K and 800 K,the molecular dynamics simulation have got successful from the following terminal temperature at 850 K,900 K,950 K and 1 000 K, It is possible to produce a higher heating rate during the sintering process, thereby effectively improving the mechanical strength of the sintered material.
引文
[1] Bonny G,Pasianot R C,Malerba L.Fe-Ni many-body potential for metallurgical applications[J].Modelling and Simulation in Materials Science and Engineering,2009,17(2):025010.
    [2] Daw M S,Baskes M I.Embedded-atom method:Derivation and application to impurities,surfaces,and other defects in metals[J].Physical Review B,1984,29(12):6443-6453.
    [3] Li J,Fang Q,Liu Y.Void formation of nanocrystalline materials at the triple junction of grain boundaries[J].Materials Research Express,2014,1(1):015013.
    [4] Moitra A,Kim S,Kim S G,et al.Investigation on sintering mechanism of nanoscale tungsten powder based on atomistic simulation[J].Acta Materialia,2010,58(11):3939-3951.
    [5] Pan H,Ko S H,Grigoropoulos C P.The solid-state neck growth mechanisms in low energy laser sintering of gold nanoparticles:a molecular dynamics simulation study[J].Journal of Heat Transfer,2008,130(9):092404.
    [6] Qian B,Taimisto L,Lehti A,et al.Monitoring of temperature profiles and surface morphologies during laser sintering of alumina ceramics[J].Journal of Asian Ceramic Societies,2014,2(2):123-131.
    [7] Rombouts M,Kruth J P,Froyen L,et al.Fundamentals of selective laser melting of alloyed steel powders[J].CIRP Annals-Manufacturing Technology,2006,55(1):187-192.
    [8] Ketkar S A,Umarji G G,Phatak G J,et al.Lead-free photoimageable silver conductor paste formulation for high density electronic packaging[J].Materials Science and Engineering:B,2006,132(1):215-221.
    [9] Koparde V N,Cummings P T.Molecular dynamics simulation of titanium dioxide nanoparticle sintering[J].The Journal of Physical Chemistry B,2005,109(51):24280-24287.
    [10] Zhang Y,Wu L,El-Mounayri H,et al.Molecular dynamics study of the strength of laser sintered iron nanoparticles[J].Procedia Manufacturing,2015,1:296-307.
    [11] Plimpton S.Fast parallel algorithms for short-range molecular dynamics[J].Journal of Computational Physics,1995,117(1):1-19.
    [12] Shuai C,Gao C,Nie Y,et al.Structural design and experimental analysis of a selective laser sintering system with nano-hydroxyapatite powder[J].Journal of Biomedical Nanotechnology,2010,6(4):370-374.
    [13] Duan B,Wang M,Zhou W Y,et al.Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering[J].Acta Biomaterialia,2010,6(12):4495-4505.
    [14] Zhu H.Sintering processes of two nanoparticles:a study by molecular dynamics simulations[J].Philosophical Magazine Letters,1996,73(1):27-33.
    [15] Ko S H,Pan H,Grigoropoulos C P,et al.All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles[J].Nanotechnology,2007,18(34):345202.
    [16] Chung H,Das S.Functionally graded Nylon-11/silica nanocomposites produced by selective laser sintering[J].Materials Science and Engineering:A,2008,487(1):251-257.
    [17] Kim J,Creasy T S.Selective laser sintering characteristics of nylon 6/clay-reinforced nanocomposite[J].Polymer Testing,2004,23(6):629-636.
    [18] Gu D,Meng G,Li C,et al.Selective laser melting of TiC/Ti bulk nanocomposites:Influence of nanoscale reinforcement[J].Scripta Materialia,2012,67(2):185-188.
    [19] Salmoria G V,Paggi R A,Lago A,et al.Microstructural and mechanical characterization of PA12/MWCNTs nanocomposite manufactured by selective laser sintering[J].Polymer Testing,2011,30(6):611-615.
    [20] Shirazi S F S,Gharehkhani S,Mehrali M,et al.A review on powder-based additive manufacturing for tissue engineering:selective laser sintering and inkjet 3D printing[J].Science and Technology of Advanced Materials,2015,16(3):033502.
    [21] Gu D,Wang H,Zhang G.Selective laser melting additive manufacturing of Ti-based nanocomposites:the role of nanopowder[J].Metallurgical and Materials Transactions A,2014,45(1):464-476.
    [22] Kruth J P,Levy G,Klocke F,et al.Consolidation phenomena in laser and powder-bed based layered manufacturing[J].CIRP Annals-Manufacturing Technology,2007,56(2):730-759.
    [23] Liu S,Yu Y,Cui Y,et al.Isothermal and nonisothermal crystallization kinetics of nylon-11[J].Journal of Applied Polymer Science,1998,70(12):2371-2380.
    [24] Childs T H C,Hauser C,Badrossamay M.Mapping and modelling single scan track formation in direct metal selective laser melting[J].CIRP Annals-Manufacturing Technology,2004,53(1):191-194.
    [25] Zheng H,Zhang J,Lu S,et al.Effect of core-shell composite particles on the sintering behavior and properties of nano-AL2O3/polystyrene composite prepared by SLS[J].Materials Letters,2006,60(9):1219-1223.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700