新二郎山隧道通风系统局部结构优化研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimization of the New Erlangshan Tunnel Ventilation System Local Structure
  • 作者:张辉川 ; 马佳 ; 韩兴博 ; 柴伦磊 ; 刘霁
  • 英文作者:Zhang Huichuan;Ma jia;Han Xingbo;Chai Lunlei;Liu Ji;Xinjiang Communication Planning Survey and Design Institute;Higway College,Chang'an University;
  • 关键词:隧道 ; 通风系统 ; 局部阻力损失 ; 数值模拟 ; 现场实测
  • 英文关键词:tunnel;;ventilation system;;local resistance coefficient;;numerical simulation;;in situ test
  • 中文刊名:BASE
  • 英文刊名:Chinese Journal of Underground Space and Engineering
  • 机构:新疆维吾尔自治区交通规划勘察设计研究院;长安大学公路学院;
  • 出版日期:2019-02-15
  • 出版单位:地下空间与工程学报
  • 年:2019
  • 期:v.15;No.112
  • 基金:交通运输部建设科技项目(2013318802400)
  • 语种:中文;
  • 页:BASE201901037
  • 页数:7
  • CN:01
  • ISSN:50-1169/TU
  • 分类号:290-296
摘要
新二郎山隧道长13.4 km,采用四斜井三区段分段纵向式通风。为了降低隧道运营期间的通风能耗,通过数值模拟对隧道通风系统中的渐缩风道长度以及渐缩角度、渐扩风道长度以及渐扩角度、弯曲风道弯曲角度进行了优化;借鉴泥巴山隧道竖井自然风通道经验,增设自然风通道排水设施与风道控制风门,设计了新二郎山隧道的自然风通道;利用CFJZ6通风机综合测试仪对隧道通风系统渐扩段建成后的局部阻力损失系数进行了现场实测。根据优化结果推荐其渐缩段风道渐缩角度为10°,风道长度为6.8 m;渐扩段风道渐扩角度为10°,风道长度为24.1 m;弯曲风道弯曲角度80°。优化后渐扩段局部阻力系数为0.100 7远小于优化前的0.380 2。
        The length of the new Erlangsahan tunnel is 13.4 km,and a 3-section with 4-shaft ventilation system was applied in this tunnel. In order to decrease the energy assumption during the tunnel operation,a numerical simulation method was used to optimize the local structure of the ventilation system including the length and angle of cross section increasing duct,the length and angle of cross section decreasing duct and the curve angle of the curve duct. Take advantage of the nature ventilation duct building experience of Nibashan tunnel,the air control doors and drainage facilities were designed for the Erlangshan tunnel nature ventilation duct. The CFJZ6 ventilator comprehensive testers was used in the field test to examine the effectiveness of the optimization results. From the study,the recommended results are listed-length of cross section increasing duct is 6.8 m and its angle is 10°,and the length of cross section decreasing duct is 24.1 m and its angle is 10°. And the curve angle of curve duct is 80°.From the in situ test,the local resistance coefficient of optimized duct is 0.100 7,which is much smaller than the0.380 2 before optimization.
引文
[1]杨超,王志伟.公路隧道通风技术现状及发展趋势[J].地下空间与工程学报,2011,7(4):819-824.(Yang Chao,Wang Zhiwei.Current status and development trend of ventilation technology for highway tunnel[J].Chinese Journal of Underground Space and Engineering,2011,7(4):819-824.(in Chinese))
    [2]王艳,王子云,唐上明,等.多匝道公路隧道通风系统模拟研究[J].地下空间与工程学报,2012,8(3):630-636.(Wang Yan,Wang Ziyun,Tang Shangming,et al.The simulation research of ventilation system of highway tunnelwith several ramps[J].Chinese Journal of Underground Space and Engineering,2012,8(3):630-636.(in Chinese))
    [3]马佳.长大公路隧道通风系统局部结构优化研究[D].西安:长安大学,2015.(Ma Jia.Study on local structure optimization of ventilation system in long highway tunnel[D].Xi’an:Chang’an University,2015.(in Chinese))
    [4]蒋树屏.公路隧道竖井送排通风模式及其工程应用[J].世界隧道,1998(4):43-48.(Jiang Shuping.Ventilation and ventilation mode of highway tunnel shaft and its engineering application[J].World Tunnel,1998(4):43-48.(in Chinese))
    [5]夏永旭,石平.公路隧道扩(缩)径风道局部损失数值模拟[J].中国公路学报,2006,19(6):83-86.(Xia Yongxu,Shi Ping.Numerical simulation of local loss of highway tunnel expansion(shrinkage)diameter duct[J].China Journal of Highway and Transport,2006,19(6):83-86.(in Chinese))
    [6]石平,夏永旭.公路隧道送排风短道流场数值分析及优化研究[J].地下空间与工程学报,2009,5(2):402-405.(Shi Ping,Xia Yongxu.Numerical analysis and optimization research of short duct flow field of outlet and inlet in highway tunnel[J].Chinese Journal of Underground Space and Engineering,2009,5(2):402-405.(in Chinese))
    [7]李峰,夏永旭,苟长飞.公路隧道通风弯道设计优化研究[J].地下空间与工程学报,2014,10(2):455-459.(Li Feng,Xia Yongxu,Gou Changfei.Study on the design optimization of bending-duct in road tunnel[J].Chinese Journal of underground space and engineering,2014,10(2):455-459.(in Chinese))
    [8]秦慧敏.关于通风管三通的局部阻力系数问题[J].暖通空调,1980(3):10-13.(Qin Huimin.Local resistance coefficient of ventilation duct three pass[J].Journal of HV&AC,1980(3):10-13.(in Chinese))
    [9]方磊,谢永利,李宁军.公路隧道竖井送排式通风排风口角度优化模型试验研究[J].现代隧道技术,2005,42(5):35-39.(Fang Lei,Xie Yongli,Li Ningjun.Study on the optimum angle between the exhausting duct orifice and the longitudinal axis of a highway tunnel with longitudinal ventilation through shafts by model test[J].Modern Tunnelling Technology,2005,42(5):35-39.(in Chinese))
    [10]郝海仙.城市道路隧道顶部竖井通风效果的优化研究[D].天津:天津大学,2012.(Hao Haixian.Optimization of ventilation effect at the top of urban road tunnel[D].Tianjin:Tianjin University,2012.(in Chinese))
    [11]中华人民共和国交通运输部.公路隧道通风设计细则(JTG/T D70/2-02-2014)[S].北京:人民交通出版社,2014.(People’s Republic of China industry recommended standard.Guidelines for design of ventilation of highway tunnels.(JTG/T D70/2-02-2014)[S].Beijing:China Communications Press,2014.(in Chinese)).
    [12]新疆维吾尔自治区交通规划勘察设计研究院.长大公路隧道通风系统局部结构优化研究[R].乌鲁木齐,2016.(Xinjiang Communication Planning Survey and Design Institute.Local resistance factor optimization research on long-sized highway tunnel ventilation system[R].Urumchi,2016.(in Chinese))

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700