头部对称刻槽弹体侵彻半无限厚铝合金靶实验与理论模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental and theoretical study of symmetrical grooved-nose projectile penetrating into semi-infinite aluminum target
  • 作者:邓佳杰 ; 张先锋 ; 刘闯 ; 王文杰 ; 徐晨阳
  • 英文作者:DENG Jiajie;ZHANG Xianfeng;LIU Chuang;WANG Wenjie;XU Chenyang;Department of Mechanical Engineering,Nanjing University of Science and Technology;
  • 关键词:侵彻机理 ; 侵彻深度 ; 头部对称刻槽弹体 ; 尖楔嵌入模型 ; 局部相互作用模型
  • 英文关键词:penetration mechanics;;penetration depth;;symmetrical grooved-nose projectile;;wedge-embedded penetration regimen;;localized interaction model
  • 中文刊名:BZCJ
  • 英文刊名:Explosion and Shock Waves
  • 机构:南京理工大学机械工程学院;
  • 出版日期:2018-02-12 12:27
  • 出版单位:爆炸与冲击
  • 年:2018
  • 期:v.38;No.182
  • 基金:国家自然科学基金项目(U1730101);; 中组部青年拔尖人才支持计划(2014);; 武器装备预研基金项目(6140657010116BQ02001)
  • 语种:中文;
  • 页:BZCJ201806005
  • 页数:10
  • CN:06
  • ISSN:51-1148/O3
  • 分类号:54-63
摘要
在综合考虑弹体结构稳定性及截面比动能的前提下,提出一种介于尖卵形弹体及尖锥形弹体间的头部对称刻槽弹体,以期达到提高侵彻深度的目的。以尖卵形弹体侵彻深度为基准,开展头部对称刻槽弹体侵彻半无限厚铝合金靶实验。在此基础上,推导得到可描述头部对称刻槽弹体侵彻2A12铝合金靶过程的局部相互作用模型。同时,结合头部对称刻槽弹体侵彻后靶体破坏现象,提出适用于头部对称刻槽弹体的靶体响应力,进而确立头部对称刻槽弹体的侵彻深度模型。实验结果与理论计算表明,头部对称刻槽弹体具有相对于尖卵形弹体更好的侵彻能力。头部对称刻槽弹体侵彻深度提高的原因是弹体头部结构截面比动能增加及其侵彻过程中的靶体弱化效应,其中弱化效应是侵彻深度提高的主控因素。
        To achieve excellent penetration performance with high-quality utilization ratio,the symmetrical grooved-nose projectile is proposed between the ogive-nose projectile and conical-nose projectile. Aiming to provide insight into the penetration performance of symmetrical grooved-nose projectile,comparative penetration tests are conducted from moderate to low velocities. Based on the experimental study,the localized interaction model for symmetrical grooved-nose projectile penetrating into semi-infinite aluminum target is derived.Combined with the phenomenon of target damage,the normal stresses acting on the localized surface of the symmetrical grooved-nose are proposed and then the penetration depth of symmetrical grooved-nose projectile can be calculated. The results of experiment and theoretical model prove that the symmetrical grooved-nose projectile has a more excellent penetration performance than the ogive-nose projectile. The reasons of increasing penetration depth for symmetrical grooved-nose projectile are the increasement of specific kinetic energy of cross section of the projectile head and the target weakening effect during penetration,and the decisive factor is the target weakening effect.
引文
[1] YANKELEVSKY D Z,GLUCK J. Nose shape effect on high velocity soil penetration[J]. International Journal of Mechanical Sciences,1980,22(5):297-311. DOI:10.1016/0020-7403(80)90030-2.
    [2] JONES S E,RULE W K. On the optimal nose geometry for a rigid penetrator,including the effects of pressure-dependent friction[J]. International Journal of Impact Engineering,2000,24(4):403-415. DOI:10.1016/S0734-743X(99)00157-8.
    [3] CHEN X W,LI Q M. Deep penetration of a non-deformable projectile with different geometrical characteristics[J]. International Journal of Impact Engineering,2002,27(6):619-637. DOI:10.1016/S0734-743X(02)00005-2.
    [4] LI Q M,CHEN X W. Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile[J]. International Journal of Impact Engineering,2003,28(1):93-116. DOI:10.1016/S0734-743X(02)00037-4.
    [5] ZHAO J,CHEN X W,JIN F N,et al. Depth of penetration of high-speed penetrator with including the effect of mass abrasion[J]. International Journal of Impact Engineering,2010,37(9):971-979. DOI:10.1016/j.ijimpeng.2010.03.008.
    [6]刘坚成,黄风雷,皮爱国,等.异型头部弹体增强侵彻性能机理研究[J].爆炸与冲击,2014,34(4):409-414. DOI:10.11883/1001-1455(2014)04-0409-06.LIU Jiancheng,HUANG Fenglei,PI Aiguo,et al. On enhanced penetration performance of modified nose projectiles[J].Explosion and Shock Waves,2014,34(4):409-414. DOI:10.11883/1001-1455(2014)04-0409-06.
    [7] LIU J,PI A,HUANG F. Penetration performance of double-ogive-nose projectiles[J]. International Journal of Impact Engineering,2015,84:13-23. DOI:10.1016/j.ijimpeng.2015.05.003.
    [8] BEN-DOR G,DUBINSKY A,ELPERIN T. Applied high-speed plate penetration dynamics[M]. Netherlands:Springer,2006:111-137.
    [9] BEN-DOR G,DUBINSKY A,ELPERIN T. High-speed penetration modeling and shape optimization of the projectile penetrating into concrete shields[J]. Mechanics Based Design of Structures and Machines,2009,37(4):538-549. DOI:10.1080/15397730903272830.
    [10] MAYERSAK J. Kinetic energy cavity penetrator weapon:U. S. Patent 20040231552[P]. 2003-05-23.
    [11]柴传国.异形头部弹体对混凝土靶的侵彻效应研究[D].北京:北京理工大学,2014:13-66.
    [12] YAKUNINA G Y. The three-dimensional motion of optimal pyramidal bodies[J]. Journal of Applied Mathematics and Mechanics,2005,69(2):234-243. DOI:10.1016/j.jappmathmech.2005.03.009.
    [13] YAKUNINA G Y. Optimum three-dimensional hypersonic bodies within the framework of a local interaction model[C]∥International Space Planes and Hypersonic Systems and Technologies Conference. Kyoto,Japan,2001.
    [14] YAKUNNA G Y. Effects of sliding friction on the optimal 3D-nose geometry of rigid rods penetrating media[J]. Optimization and Engineering,2005,6(3):315-338. DOI:10.1007/s11081-005-1742-6.
    [15]范少博,陈智刚,侯秀成,等.旋进侵彻弹丸数值模拟与试验研究[J].弹箭与制导学报,2013(1):80-83. DOI:10.15892/j.cnki.djzdxb.2013.01.041.FAN Shaobo,CHEN Zhigang,HOU Xiucheng,et al. Numerical simulation and experimental study on novel rotating penetration projectile[J]. Journal of Projectiles,Rockets,Missiles and Guidance,2013(1):80-83. DOI:10.15892/j.cnki.djzdxb.2013.01.041.
    [16] ERENGIL M E,CARGILE D J. Advanced projectile concept for high speed penetration of concrete targets[C]∥Proceedings of 20th International Symposium on Ballistics. Orlando,2002.
    [17]梁斌,陈小伟,姬永强,等.先进钻地弹概念弹的次口径高速深侵彻实验研究[J].爆炸与冲击,2008,28(1):1-9.DOI:10.3321/j.issn:1001-1455.2008.01.001.LIANG Bin,CHEN Xiaowei,JI Yongqiang,et al. Experimental study on deep penetration of reduced-scale advanced earth penetrating weapon[J]. Explosion and Shock Waves,2008,28(1):1-9. DOI:10.3321/j.issn:1001-1455.2008.01.001.
    [18] WU H,WANG Y,HUANG F. Penetration concrete targets experiments with non-ideal&high velocity between 800 and1 100 m/s[J]. International Journal of Modern Physics B, 2008,22(09n11):1087-1093. DOI:10. 1142/S0217979208046360.
    [19] HE L L,CHEN X W,WANG Z H. Study on the penetration performance of concept projectile for high-speed penetration(CPHP)[J]. International Journal of Impact Engineering,2016,94:1-12. DOI:10.1016/j.ijimpeng.2016.03.010.
    [20] AMON J,SCHWARTZ A,BRANDEIS Y. Missile warhead:U. S. Patent 9,267,774[P]. 2016-02-23.
    [21]庞春旭,何勇,沈晓军,等.刻槽弹体旋转侵彻铝靶试验与数值模拟[J].弹道学报,2015(1):70-75. DOI:10.3969/j.issn.1004-499X.2015.01.014.PANG Chunxu,HE Yong,SHEN Xiaojun,et al. Experimental investigation and numerical simulation on grooved projectile rotationally penetration into aluminum target[J]. Journal of Ballistics,2015(1):70-75. DOI:10.3969/j.issn.1004-499X.2015.01.014.
    [22]庞春旭,何勇,沈晓军,等.刻槽弹体旋转侵彻混凝土效应试验研究[J].兵工学报,2015,36(1):46-52. DOI:10.3969/j.issn.1000-1093.2015.01.007.PANG Chunxu,HE Yong,SHEN Xiaojun,et al. Experimental investigation on penetration of grooved projectiles into concrete targets[J]. Acta Armamentarii,2015,36(1):46-52. DOI:10.3969/j.issn.1000-1093.2015.01.007.
    [23] FORRESTAL M J,WARREN T L. Penetration equations for ogive-nose rods into aluminum targets[J]. International Journal of Impact Engineering,2008,35(8):727-730. DOI:10.1016/j.ijimpeng.2007.11.002.
    [24] LUK V K,FORRESTAL M J,AMOS D E. Dynamic spherical cavity expansion of strain-hardening materials[J]. Journal of Applied Mechanics,1991,58(1):1-6. DOI:10.1115/1.2897150.
    [25] CHEREPANOV G P. An analysis of two models of super-deep penetration[J]. Engineering Fracture Mechanics,1996,53(3):399-423. DOI:10.1016/0013-7944(95)00104-2.
    [26] CHEREPANOV G P. Super-deep penetration[J]. Engineering Fracture Mechanics,1994,47(5):691-713. DOI:10.1016/0013-7944(94)90160-0.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700