不同气体组分的PS-PVD射流光谱诊断
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spectroscopic Method for Diagnosing PS-PVD Jet of Different Gas Composition
  • 作者:王凯 ; 刘敏 ; 毛杰 ; 邓子谦 ; 文魁
  • 英文作者:WANG Kai;LIU Min;MAO Jie;DENG Zi-qian;WEN Kui;School of Materials Science and Engineering,Central South University;Guangdong Institute of New Materials, National Engineering Laboratory for Modern Material Surface Engineering Technology,The Key Lab of Guangdong for Modern Surface Engineering Technology;
  • 关键词:超低压等离子体射流 ; 发射光谱 ; 气体组分 ; 电子温度 ; 电子密度
  • 英文关键词:Low pressure plasma Jet;;Emission spectrum;;Gas composition;;Electronic temperature;;Electronic density
  • 中文刊名:GUAN
  • 英文刊名:Spectroscopy and Spectral Analysis
  • 机构:中南大学材料科学与工程学院;广东省新材料研究所,现代材料表面工程技术国家工程实验室,广东省现代表面工程技术重点实验室;
  • 出版日期:2017-10-15
  • 出版单位:光谱学与光谱分析
  • 年:2017
  • 期:v.37
  • 基金:广东省对外合作项目(2013B050800027);; 广州市对市合作项目(201508030001);; 广东省科学院平台建设项目(2016GDASPT-0206,2016GDASPT-0317)资助
  • 语种:中文;
  • 页:GUAN201710003
  • 页数:5
  • CN:10
  • ISSN:11-2200/O4
  • 分类号:13-17
摘要
采用发射光谱分析不同气体组分的等离子喷涂-物理气相沉积(PS-PVD)射流,通过Abel转换得出射流径向各点处的光谱强度,比较和分析射流中不同气体的成分分布。采用多谱线斜率法研究不同气体组分的射流在径向距离上电子温度的变化,通过Hβ谱线的stark展宽计算径向上电子密度的分布。结果表明:Ar/H_2气体中,H_2在焰流中心区域(0~30mm)分布较为均匀,但在焰流中心稍靠外的区域(30~60mm)随着径向距离的增加而增加;加入He后,Ar和H_2在焰流中心处浓度较低并在一定范围内随着径向距离的增加而增加,He往焰流中心聚集;不同气体组分的电子温度和电子密度随着径向距离的增加而降低,同时受到H_2和He的影响。
        Emission spectroscopy was used to analyze the plasma spray physical vapor deposition(PS-PVD)jet of different gas compositions and Abel inversion was used to calculate the spectral intensity of radial point to get the gas distributions of different gases.Multispectral line slope method was used to study the impact of radial distance and gas composition on electronic temperature.Radial distribution of electronic density was calculated by stark broadening.The results showed that:in Ar/H_2 gas,H_2was well-distributed in the 0-30 mm area and increased with radial distance in the 30~60mm area;After adding He gas,the concentrations of Ar and H_2 were low at the centre of jet and increased with radial distance,and He gathered at the centre of plasma jet;Electronic temperature and density decreased with the increase of radial distance,at the same time,influenced by H_2 and He.
引文
[1]GAO Li-hua,WEI Liang-liang,GUO Hong-bo(高丽华,魏亮亮,郭洪波).Ceramics International(国际陶瓷),2016,42(4):5530.
    [2]GAO Yang(高阳).Thermal Spray Technology(热喷涂技术),2010,3(2):13.
    [3]NI Li-yong,QI Peng,YANG Zhen-xiao(倪立勇,戚鹏,杨震晓).Thermal Spray Technology(热喷涂技术),2014,6(3):7.
    [4]ZHANG Nan-nan(张楠楠).Dalian University of Technology(大连理工大学),2012.
    [5]SUN Cheng-qi,GAO Yang,YANG De-ming,et al(孙成琪,高阳,杨德明,等).Laser and Optoelectronics Progress(激光与光电子学进展),2015,52(4):1.
    [6]LU Tong-xing,CUI Zhi-feng,ZHAO Xian-zhang(陆同兴,崔执凤,赵献章).Chinese Journal of Laser(中国激光),1994,21(2):114.
    [7]Semenov S,Cetegen B.Journal of Thermal Spray Technology,2001,10(2):326.
    [8]Gindral M.Centre de recherches en Physique des Plasma,Switzerland,2004.
    [9]Bockasten K.Journal of the Optical Society of America,1961,51(9).
    [10]Illingworth R.Journal of Physics E Scientific Instruments,1981,14(2).
    [11]DING Pei-zhu,PAN Shou-fu(丁培柱,潘守甫).Acta Scientiarum Naturalium Universitatis Jilinensis(吉林大学自然科学学报),1987,(2):68.
    [12]Alvarez R,Rodero A,Quintero M C.Spectrochimica Acta Part B,2002,57:1665.
    [13]DONG Li-fang,TONG Guo-liang,ZHANG Yu(董丽芳,仝国良,张玉).Spectroscopy and Spectral Analysis(光谱学与光谱分析),2014,34(4):919.
    [14]XU Wei,WAN Bao-nian(徐伟,万宝年).Acta Optica Sinica(光学学报),2003,23(9):1115.
    [15]Hamatani H,Crawford W S,Capelli M.Surface and Coatings Technology,2002,162:79.
    [16]Rajabian M,Gravelle D,Vacqui S.Plasma Chem and Plasma Proc.,2004,24(2):261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700