DP980+Z烘烤硬化值与退火温度的关系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Correlation between bake hardening values and annealing temperature of DP980+Z
  • 作者:郑晓飞 ; 康永林 ; 巫雪松
  • 英文作者:ZHENG Xiao-fei;KANG Yong-lin;WU Xue-song;School of Materials Science and Engineering, University of Science and Technology Beijing;Cold Rolling Department, Shougang Jingtang United Iron and Steel Co., Ltd.;
  • 关键词:烘烤硬化值 ; 屈服强度 ; 代表性体积单元 ; 退火温度 ; 固溶碳
  • 英文关键词:bake hardening value;;yield strength;;representative volume element;;annealing temperature;;solute carbon
  • 中文刊名:IRON
  • 英文刊名:Journal of Iron and Steel Research
  • 机构:北京科技大学材料科学与工程学院;首钢京唐钢铁联合有限责任公司冷轧作业部;
  • 出版日期:2019-05-15
  • 出版单位:钢铁研究学报
  • 年:2019
  • 期:v.31
  • 语种:中文;
  • 页:IRON201905007
  • 页数:6
  • CN:05
  • ISSN:11-2133/TF
  • 分类号:65-70
摘要
为了研究退火温度对镀锌DP980+Z烘烤硬化值的影响,退火温度控制在760~820℃之间,系统分析退火温度对烘烤硬化值的影响。通过准静态拉伸试验机测量烘烤硬化值及抗拉强度,采用lepara试剂对组织中的马氏体进行着色,利用金相显微镜及图像处理软件测量马氏体的体积分数;采用扫描电镜观察DP980+Z的双相组织特点,并且将组织图片通过CAD转化成有限元图进行网格划分,建立代表性体积单元(RVE),通过有限元分析铁素体、马氏体强度对烘烤硬化值的影响。在同样的变形量情况下,DP980+Z的原始屈服强度越高,烘烤硬化值越高。
        The annealing temperature was controlled in the range of 760 to 820 ℃ to investigate the effect of annealing temperature on the bake hardening(BH) value of DP980 + Z. The tensile strength and BH values were tested by quasi-static tensile testing machine. Martensite was colored by Lepara reagent and its volume fraction was measured by color metallography. The dual-phase microstructure of DP980+Z was observed by scanning electron microscopy, and the results were analyzed by finite element analysis using CAD. Representative volume element(RVE) was built to investigate the effect of tensile strength of ferrite and martensite on BH values. Results demonstrate that under the same deformation amount, the higher original yield strength of DP980+Z leads to the larger bake hardening value.
引文
[1] 刘斌,吴润,王孟,等.高强度热轧双相钢的低周疲劳性能[J].钢铁研究学报,2017,29(8):667.(Liu B,Wu R,Wang M,et al.Low cycle fatigue properties of hot-rolled high strength dual phase steel[J].Journal of Iron and Steel Research,2017,29(8):667.)
    [2] Ormsuptave N,Uthaisangsuk V.Effect of fine grained dual phase steel on bake hardening properties[J].Steel Research,2017,88(3):1.
    [3] Timokhina I B,Pereloma E V,Ringer S P,et al.Characterization of the bake-hardening behavior of transformation induced plasticity and dual-phase steels using advanced analytical techniques[J].ISIJ International,2010,50(4):574.
    [4] Robertson L T,Hiditch T B,Hodgson P D.The effect of prestrain and bake hardening no the low-cycle fatigue properties of TRIP steel[J].International Journal of Fatigue,2008,30:587.
    [5] 马鸣图,吴宝榕.双相钢:物理和力学冶金[M].北京:冶金工业出版社,2009.(Ma M T,Wu B R.Dual Phase Steel:Physical and Mechanical Metallurgy[M].Beijing:Metallurgical Industry Press,2009.)
    [6] 雍岐龙.钢铁材料中的第二相[M].北京:冶金工业出版社,2006.(Yong Q L.The Second Phase in the Iron Steels[M].Beijing:Metallurgical Industry Press,2006.)
    [7] Movahed P,Kolahgar S,Marashi S P H,et al.The effect of intercritical heat treatment temperature on the tensile properties and work hardening behavior of ferrite-martensite dual phase steel sheets[J].Materials Science and Engineering,2009,518A:1.
    [8] Byun T S,Kim I S.Tensile properties and inhomogeneous deformation of ferrite- martensite dual-phase steels[J].Journal of Materials Science,1993,28(11):2923.
    [9] Sun X,Choi K S,Liu W N,et al.Predicting failure modes and ductility of dual phase steels using plastic strain localization[J].International Journal of Plasticity,2009,25(10):1888.
    [10] Choi K S,Liu W N,Sun X,et al.Influence of martensite mechanical properties on failure mode and ductility of dual-phase steels[J].Metallurgical and Materials Transactions,2009,40A(4):796.
    [11] Uthaisangsuk V,Prahl U,Bleck W.Modelling of damage and failure in multiphase high strength DP and TRIP steels[J].Engineering Fracture Mechanics,2011,78(3):469.
    [12] Rodriguez R,Gutierrez I.Unified formulation to predict the tensile curves of steels with different microstructures [J].Materials Science Forum,2003,426-432:4525.
    [13] Uthaisangsuk V,Muenstermann S,Prahl U,et al.A study of microcrack formation in multiphase steel using representative volume element and damage mechanics[J].Computational Materials Science,2011,50(4):1225.
    [14] Kadkhodapour J,Butz A,Rad S Z,et al.A micro mechanical study on failure initiation of dual phase steels under tension using single crystal plasticity model[J].International Journal of Plasticity,2011,27(7):1103.
    [15] Vajragupta N,Uthaisangsuk V,Schmaling B,et al.A micromechanical damage simulation of dual phase steels using XFEM[J].Computational Materials Science,2012,54:271.
    [16] Ramazani A,Schwedt A,Aretz A,et al.Characterization and modelling of failure initiation in DP steel[J].Computational Materials Science,2013,75:35.
    [17] Paul S K.Real microstructure based micromechanical model to simulate microstructural level deformation behavior and failure initiation in DP590 steel[J].Materials and Design,2013,44:397.
    [18] Waterschoot T,Verbeken K,Cooman B C D.Tempering kinetics of the martensitic phase in DP steel[J].ISIJ International,2006,46(1):138.
    [19] Zhao X M,Kang Y L,Han Q H.Influence of Mo on dynamic continuous cooling transformation of 1 000 MPa cold rolled dual phase steel[J].Journal of Iron and Steel Research International,2011,18(s1):296.
    [20] Zare A,Ekrami A.Effect of martensite volume fraction on work hardening behavior of triple phase (TP) steels[J].Materials Science and Engineering,2011,528A(13/14):4422.
    [21] Kang Y L,Han Q H,Zhao X M,et al.Influence of nanoparticle reinforcements on the strengthening mechanisms of an ultrafine-grained dual phase steel containing titanium[J].Materials and Design,2013,44:331.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700