合金材料亚稳相的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress on metastable phase of alloy materials
  • 作者:崔春娟 ; 王松苑 ; 任驰强 ; 刘艳云 ; 王丛 ; 来园园
  • 英文作者:CUI Chunjuan;WANG Songyuan;REN Chiqiang;LIU Yanyun;WANG Cong;LAI Yuanyuan;School of Metallurgical Engineering,Xi'an University of Architecture and Technology;Wear-resisting Material Engineering Technology Research Center of Shaanxi Province;
  • 关键词:亚稳相 ; 平衡相 ; 固态相变 ; 合金材料
  • 英文关键词:metastable phases;;equilibrium phase;;solid phase transformation;;alloy materials
  • 中文刊名:GNCL
  • 英文刊名:Journal of Functional Materials
  • 机构:西安建筑科技大学冶金工程学院;陕西省耐磨材料工程技术研究中心;
  • 出版日期:2019-07-30
  • 出版单位:功能材料
  • 年:2019
  • 期:v.50;No.430
  • 基金:国家自然科学基金资助项目(51201121);; 陕西省国际科技合作与交流计划资助项目(2016KW-055);; 陕西省重点产业创新链资助项目(2019ZDLGY04-04);; 陕西省耐磨材料工程技术研究中心专项资金资助项目(2016NMZX03)
  • 语种:中文;
  • 页:GNCL201907010
  • 页数:8
  • CN:07
  • ISSN:50-1099/TH
  • 分类号:58-65
摘要
亚稳合金材料对于材料科学领域的影响是巨大的,它包括晶态亚稳相、微晶亚稳相、准晶亚稳相和金属玻璃4大类。它与一般的金属材料性能不同,例如,晶态亚稳相具有良好的耐腐蚀性能;微晶亚稳相由于晶粒细小而具有高强度和硬度;金属玻璃,即为非晶态合金,其内部组织均匀且无缺陷,又没有晶体的磁各向异性,因此表现出了高强度和低的矫顽力。正是由于这些优异性能,使得亚稳合金材料在材料科学领域掀起了一股研发浪潮。在亚稳相发现的这几十年里,研究者们通过大量的实验研究,提出并丰富了很多亚稳相的制备方法,例如通过控制凝固过程来获得亚稳相,但该制备方法操作过程较为复杂,还需要进一步优化;通过积聚方法可以制备出金属玻璃、非晶薄膜等,大大提高了材料的抗腐蚀性能。通过这些方法,制备出了能够大大提高材料性能的亚稳相合金材料。为了完善亚稳相的制备体系,研究者们还需要做进一步的探索。但对于会对材料产生负面影响的亚稳相,要进行转化和消除。介绍了亚稳相的概念及其形成机理,并从动力学和热力学两个方面证明了亚稳相在一定条件下是可以稳定存在的,系统地总结了合金材料中亚稳相的分类、特点及其应用。由于不同的亚稳相对材料会产生不同的影响,详细阐述了对合金材料产生负面影响的亚稳相的消除方法,并说明了亚稳相被消除以后对材料性能的改善。另外,论述了提高材料性能的亚稳相的制备方法及其特点。最后对合金材料亚稳相的研究重点和发展方向进行了展望。
        The metastable alloy materials including crystalline metastable, microcrystalline metastable, quasi-crystal metastable, and metallic glass have great influences on the field of materials science. They are different from ordinary metal materials. For example, the crystalline metastable phase has good corrosion resistance, the microcrystalline metastable phase has high strength and hardness due to fine grain, and the metallic glass which is an amorphous alloy has many characters such as uniform internal structure. The metallic glass has no defects or magnetic anisotropy, thus exhibiting high strength and low coercivity. Because of the excellent properties of these metastable alloy materials, a research wave has been created in the field of materials science. In the decades, many methods for the preparation of metastable phases have been obtained through extensive practice and testing. For example, the metastable phase is obtained by controlling the solidification process, but the preparation process is complicated and needs further optimization. Through the accumulation method, metal glass and amorphous film can be prepared, which greatly improves the corrosion resistance of the material. Through these methods, a metastable phase is prepared that can greatly improve the material's properties. In order to improve the preparation system of the metastable phase, further explorations are still needed. However, the metastable phase, which will have a negative impact on the material, must be transformed and eliminated. The basic concept and formation mechanism of metastable phases were introduced in the present paper. The possibility that metastable phase could be stable under certain conditions was proved according to the theory dynamics and thermodynamics. The classification, formation mechanism and preparation techniques of metastable phases in alloy materials were systematically summarized. Different kinds of metastable materials would have different effects. Therefore, the elimination method of the negative metastable phase was demonstrated in the present paper, and the improvement of material properties due to the elimination of the metastable phase was also explained. Moreover, the preparation methods of the metastable phase which could improve the material properties were focused on this paper. Finally, the future research points and development trends of metastable phases were forecasted.
引文
[1] Yang Changlin.Structural evolution and metastable phase formation of Fe-B eutectic alloy under high undercooling/hyperundercooling conditions[D].Xi’an:Northwestern Polytechnical University,2004(in Chinese).杨长林.深过冷(超过冷)条件下Fe-B共晶合金组织演化及亚稳相的形成[D].西安:西北工业大学,2004.
    [2] Wu Zhifang,Liu Chao,Zhou Fan.Research progress on the thermodynamics of binary immiscible alloy systems by mechanical alloying[J].Powder Metallurgy Industry,2016,26(2):58-62(in Chinese).吴志方,刘超,周帆.二元互不溶体系合金机械合金化的热力学研究进展[J].粉末冶金工业,2016,26(2):58-62.
    [3] Palm M,Engberding N,Stein F,et al.Phases and evolution of microstructures in Ti-60 at.% Al[J].Acta Materialia,2012,60(8):3559-3569.
    [4] Li Mingjun,Xue Yufang,Song Guangsheng.Metastable phase formation and microstructure evolution in undercooled Fe-30Co alloy[J].Acta Metallurgica Sinica,1999,35(5):517-522(in Chinese).李明军,薛玉芳,宋广生.深过冷 Fe-30Co 合金中亚稳相形成与组织演化[J].金属学报,1999,35(5):517-522.
    [5] Yang Changlin.Metastable phase and non-equilibrium solidification in hypercooled bulk Fe-B eutectic alloys[D].Xi’an:Northwestern Polytechnical University,2006(in Chinese).杨长林.超过冷Fe-B共晶合金中的亚稳相及非平衡凝固规律[D].西安:西北工业大学,2006.
    [6] Wang Jing,Cao Chongde,Zeng Xiang,et al.Metastable phase separation and rapid solidification of undercooled Cu40Co40Ti20 alloy[J].Foundry Technology,2011,32(7):943-946(in Chinese).王静,曹崇德,曾祥,等.深过冷 Cu40Co40Ti20 合金的亚稳相分离与快速凝固[J].铸造技术,2011,32(7):943-946.
    [7] Barriobero-Vila P.Phase transformation kinetics during continuous heating of α+β and metastable β titanium alloys[J].Associazione Italiana Di Aeronautica E Astronautica,2015,28(3):148-152.
    [8] Xu Zuyao.Quenching-partitioning-tempering (Precipitation)(Q-P-T) process for ultra-high strength steel[J].Heat Treatment,2008,23(2):1-5(in Chinese).徐祖耀.用于超高强度钢的淬火-碳分配-回火 (沉淀)(Q-P-T) 工艺[J].热处理,2008,23(2):1-5.
    [9] Lima L O R,Jacumasso S C,Martins J P,et al.Study of the effects of two-step ageing heat treatment on fatigue crack growth on an AA7050 aluminum alloy[J].Advanced Materials Research,2014,891-892:1111-1116.
    [10] Liu M,Shan N,Chen L,et al.A mild l-cystine-assisted hydrothermal route to metastable γ-MnS multipods[J].Applied Surface Science,2012,258(20):7922-7927.
    [11] Davies R G.Influence of martensite composition and content on the properties of dual phase steels[J].Metallurgical Transactions A,1978,9(5):671-679.
    [12] Wu Y,Li M,Wang X,et al.Preparation and fluorescence property of pure Bi2SiO5 powders by Pechini sol-gel method[J].Advanced Manufacturing Processes,2016,32(5):480-483.
    [13] Wang Wenkui.Exposure of metastable phase by high pressure[J].Chinese Journal of High Pressure Physics,1989,3(4):257-268(in Chinese).王文魁.亚稳相的高压暴露[J].高压物理学报,1989,3(4):257-268.
    [14] Shi Deke.Fundamentals of material science [M].Beijing:Machinery Industry Press,2014(in Chinese).石德珂.材料科学基础[M].北京:机械工业出版社,2014.
    [15] Herlach D M,Feuerbacher B.Non-equilibrium solidification of undercooled metallic melts[J].Advances in Space Research,1991,11(7):255-262.
    [16] Turnbull D.Metastable structures in metallurgy[J].Metallurgical Transactions A,1981,12(5):695-708.
    [17] Shechtman D,Blech I,Gratias D,et al.Metallic phase with long-range orientational order and no translational symmetry[M]// The Selected Works of John W Cahn.New York:John Wiley & Sons,Inc,2013:1951-1953.
    [18] Tang Tiantian,Tang Peilin,Zhao Qian,et al.Different pretreatments and optimization of electroless nickel plating on aluminum alloy[J].Journal of Materials Science & Engineering,2017,35(5):820-825(in Chinese).唐田田,党沛琳,赵倩,等.铝合金表面预处理及其镀镍工艺优化[J].材料科学与工程学报,2017,35(5):820-825.
    [19] Wang Yanjun,Zhang Xin,Liu Zhenyang,et al.Preparation and properties of flake zine-aluminum alloy powder[J].Southern Metals,2017(3):4-6(in Chinese).王彦军,张鑫,刘镇洋,等.片状锌铝合金粉的制备及性能研究[J].南方金属,2017(3):4-6.
    [20] Liu B A,Hu G X,Zhang Q H,et al.Effect of raw material and growth method on optical properties of DKDP crystal[J].Chinese Optics Letters,2014,12(10):91-95.
    [21] Xu Yingfan,Huang Xinming.Formation of Pd-Ni-P supersaturated solid solution under high pressure[J].Acta Physica Sinica,1991,40(5):781-786(in Chinese).许应凡,黄新明.高压下Pd-Ni-P过饱和固溶体的形成[J].物理学报,1991,40(5):781-786.
    [22] Shuai Gewang,Fang Ping,Guo Zhenghua,et al.Aging treatment of Cu-Fe supersaturated solid solution prepared by mechanical alloying[J].Journal of Materials and Engineering,2008(12):51-54(in Chinese).帅歌旺,方平,郭正华,等.机械合金化制备Cu-Fe过饱和固溶体及其时效分解[J].材料工程,2008(12):51-54.
    [23] Fan Guojiang,Quan Mingxiu.Synthesis of Al-Ti nano-saturated solid solutions by mechanical alloying[J].Chinese Journal of Materials Research,1995,9(1):40-43(in Chinese).范国江,全明秀.机械合金化合成Al-Ti系纳米过饱和固溶体[J].材料研究学报,1995,9(1):40-43.
    [24] Xu Yaqin,Wang Xiufeng,Jiang Hongtao,et al.Preparation of Bi2SiO5 metastable phase powders by chemical solution decomposition method[J].Journal of Synthetic Crystals,2011,40(6):1541-1546(in Chinese).许雅琴,王秀峰,江红涛,等.化学溶液分解法合成亚稳相硅酸铋(Bi2SiO5)粉体[J].人工晶体学报,2011,40(6):1541-1546.
    [25] Fu Z,Chen W,Wen H,et al.Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy[J].Acta Materialia,2016,107:59-71.
    [26] Li Bolin,Zhu Min.Hardening and softening of supersaturated solid solution of Fe-Cu nanocrystals formed by mechanical alloying[J].Acta Metallurgica Sinica,1997,6(4):420-426(in Chinese).李伯林,朱敏.机械合金化形成的Fe-Cu纳米晶过饱和固溶体的硬化及软化[J].金属学报,1997,6(4):420-426.
    [27] Xiong Gang,Yang Xujie.Synthesis and characterization of nanocrystalline zinc ferrite and barium ferrite[J].Journal of Inorganic Materials,1998,13(4):613-618(in Chinese).熊纲,杨绪杰.纳米晶铁酸锌和铁酸镧的合成与表征[J].无机材料学报,1998,13(4):613-618.
    [28] Dong Xiangting,Yan Jinghui,Yu Wei.Preparation of nanocrystalline CeO2 by hydrothermal crystallization[J].Rare Metal Materials and Engineering,2002,31(4):312-314(in Chinese).董相廷,闫景辉,于薇.水热晶化法制备CeO2纳米晶[J].稀有金属材料与工程,2002,31(4):312-314.
    [29] Qu J,Lu X,Li D,et al.Silver/hydroxyapatite composite coatings on porous titanium surfaces by sol-gel method[J].J Biomed Mater Res B Appl Biomater,2011,97B(1):40-48.
    [30] Yang G L,Ko H H,Hsu Y W,et al.Growth behavior of nanosized ceria powders prepared by coprecipitation routes[J].Ceramics International,2013,39(6):6805-6811.
    [31] Li Guojin,Huang Xiaoxian,Guo Jingkun,et al.Preparation of nanocrystalline NiO by alcohol-water method[J].Journal of Functional Materials,2002,33(4):398-400(in Chinese).李国军,黄校先,郭景坤,等.醇-水法制备纳米晶NiO粉体[J].功能材料,2002,33(4):398-400.
    [32] Wu Qisheng,Zhang Shaoming.Study on Nano-Crystalline CaTiO3 synthesized by mechanochemistry[J].Journal of the Chinese Ceramic Society,2001,29(5):479-483(in Chinese).吴其胜,张少明.机械力化学合成CaTiO3纳米晶的研究[J].硅酸盐学报,2001,29(5):479-483.
    [33] Peng Zhizhong.The significance of the discovery of the five-order symmetry axis and quasicrystalline state in crystallography,mineralogy and geology[J].Geological Science and Technology Information,1985(03):1-20(in Chinese).彭志忠.5次对称轴和准晶态的发现在结晶学、矿物学和地质学中的意义[J].地质科技情报,1985(03):1-20.
    [34] Guo Kexin.Five symmetrical and quasi-crystalline states[J].Chinese Journal of Physics,1985,14(8):449-451(in Chinese).郭可信.5次对称与准晶态[J].物理,1985,14(8):449-451.
    [35] Liu Xinbao.Deep undercooling and solidification of decahedral quasicrystals in AlNiCo alloys[D].Xi’an:Northwestern Polytechnical University,2003(in Chinese).刘新宝.AlNiCo合金深过冷及十面体准晶的凝固行为[D].西安:西北工业大学,2003.
    [36] Chen Lifan.Research on signgle crystal growth and physical properties of Al-Cu-Co-Ges quasicrystals and solid-liquid structure and deep undercooling of Al-Cu-Fe quasicrystals[D].Beijing:Chinese Academy of Sciences,1994(in Chinese).陈立凡.Al-Cu-Co-Ges准晶单晶生长和物性以及Al-Cu-Fe准晶固液态结构和深过冷研究[D].北京:中国科学院,1994.
    [37] Souza C A C,Ribeiro D V,Kiminami C S.Corrosion resistance of Fe-Cr-based amorphous alloys:an overview[J].Journal of Non-Crystalline Solids,2016,442:56-66.
    [38] Wang Weihua.The nature and characteristics of amorphous materials[J].Progress in Physics,2013(5):177-351(in Chinese).汪卫华.非晶态物质的本质和特性[J].物理学进展,2013(5):177-351.
    [39] Duwez P,Willens R H,Klement W.Continuous series of metastable solid solutions in silver-copper alloys[J].Journal of Applied Physics,1960,31(6):1136-1137.
    [40] Chen Kexin.Hope and dilemma——review and prospect of preparation methods of metal glass[J].Journal of Kunming University,1986(3):60-66(in Chinese).陈可新.希望和困境——金属玻璃制备方法的回顾和展望[J].昆明学院学报,1986(3):60-66.
    [41] Chai Lihua,Liu Zhiguang,Chen Yuyong,et al.Microstructures of rapidly solidified TiAl alloys with different content of yttrium[C]//The 13th National Academic Symposium on Titanium and Titanium Alloys.Harbin:Harbin Institute of Technolog,2008:484-487(in Chinese).柴丽华,刘志光,陈玉勇,等.不同含钇量的快速凝固TiAl合金显微组织[C]//第十三届全国钛及钛合金学术交流会论文集.哈尔滨:哈尔滨工业大学,2008:484-487.
    [42] Shi Zhongliang,Gu Mingyuan,Zhang Huo,et al.A solidification processing control method on the formation of metastable phase and its characteristics[J].Acta Metallurgica Sinica,1999(4):430-432(in Chinese).施忠良,顾明元,张获,等.一种亚稳相形成的凝固过程控制方法及其特征[J].金属学报,1999(4):430-432.
    [43] Liu Tianwei,Zhu Shengfa,Huang He,et al.Growth and characterization of Ti-Al films on uranium and silicon substrates[J].Chinese Journal of Vacuum Science and Technology,2011(2):242-246(in Chinese).刘天伟,朱生发,黄河,等.U及Si基表面Ti-Al薄膜的制备及组织结构研究[J].真空科学与技术学报,2011(2):242-246.
    [44] Liu Xiuru,Wang Mingyou,Zhang Doudou,et al.Progress in preparation of bulk metastable materials by rapid compression induced solidification[J].Chinese Journal of High Pressure Physics,2014,28(4):385-393(in Chinese).刘秀茹,王明友,张豆豆,等.快速压致凝固法制备块体亚稳材料的研究进展[J].高压物理学报,2014,28(4):385-393.
    [45] Wang Yajun,Yu Haoyang,Li Zexue,et al.Effect of additives on low temperature water phase synthesis and optical properties of metastable phase γ-Bi2O3 [J].Chinese Journal of Materials Research,2018,32(2):149-154(in Chinese).王亚军,于海洋,李泽雪,等.添加剂对亚稳相γ-Bi2O3的低温水相合成和光性能的影响[J].材料研究学报,2018,32(2):149-154.
    [46] Tsaur B Y,Lau S S,Hung L S,et al.Microalloying by ion-beam mixing [J].Nuclear Instruments & Methods,1980,s182-183(APR):67-77.
    [47] Li Zhaofeng,Zhang Jinxin,Liu Baixin.Formation and thermodynamic models of metastable phases in binary metal multilayers [C] //Beijing:Formation and thermodynamic model of metastable phases in binary metal multilayers.New Progress in Materials Science and Engineering,2000(in Chinese).李兆峰,张晶星,柳百新.二元金属多层膜中亚稳相的形成及热力学模型[C] // 北京:二元金属多层膜中亚稳相的形成及热力学模型.材料科学与工程新进展,2000.
    [48] Mehrizi M Z,Beygi R,Eisaabadi G.Synthesis of Al/TiC-Al2O3,nanocomposite by mechanical alloying and subsequent heat treatment[J].Ceramics International,2016,42(7):8895-8899.
    [49] Liu Wei,Fan Zhonghua,Wang Xiaorong,et al.Investigation of microstructure and thermo-stability of Ag-Cu-Sn filler metal powders prepared by mechanical alloying[J].Journal of Materials Science & Engineering,2017,35(4):517-523(in Chinese).刘薇,范仲华,王晓蓉,等.机械合金化制备Ag-Cu-Sn钎料的组织和热稳定性[J].材料科学与工程学报,2017,35(4):517-523.
    [50] Koch C C,Cavin O B,Mckamey C G,et al.Preparation of “amorphous” Ni60Nb40 by mechanical alloying[J].Applied Physics Letters,1983,43(11):1017-1019.
    [51] Schwarz R B,Petrich R R,Saw C K.The synthesis of amorphous Ni-Ti alloy powders by mechanical alloying [J].Journal of Non-Crystalline Solids,1985,76(2):281-302.
    [52] Hellstern E,Schultz L.Amorphization of transition metal Zr alloys by mechanical alloying[J].Applied Physics Letters,1986,48(2):124-126.
    [53] Weeber A W,Van D M K,Bakker H,et al.The preparation of amorphous Ni-Zr powder by mechanical alloying[J].Journal of Physics F:Metal Physics,1986,16(16):1897-1904.
    [54] Hu Zhuangqi,Zhang Haifeng,Liu Zhiguang,et al.Preparation of nonequilibrium materials by mechanical alloying[J].Mechanical Engineering Materials,2001,25(5):1-8(in Chinese).胡壮麒,张海峰,刘智光,等.机械合金化制备亚稳材料[J].机械工程材料,2001,25(5):1-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700