草海湿地食物链稳定碳氮同位素特征与食物链结构
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Stable carbon and nitrogen isotope characteristics and structure of the food chain in Lake Caohai
  • 作者:宋正城 ; 曾玲霞 ; 何天容 ; 李振吉
  • 英文作者:SONG Zheng-cheng;ZENG Ling-xia;HE Tian-rong;LI Zhen-ji;Key Laboratory of Karst Environment and Geohazard,Ministry of Land and Resources,Guizhou University;Guizhou Caohai National Nature Reserve Administration;
  • 关键词:草海 ; 碳氮稳定同位素 ; 特征 ; 营养级 ; 食物链
  • 英文关键词:Caohai;;stable carbon and nitrogen isotopes;;characteristics;;trophic level;;food chain
  • 中文刊名:STXZ
  • 英文刊名:Chinese Journal of Ecology
  • 机构:贵州大学国土资源部喀斯特环境与地质灾害防治实验室;贵州草海国家级自然保护区管理局;
  • 出版日期:2018-12-12 13:40
  • 出版单位:生态学杂志
  • 年:2019
  • 期:v.38;No.308
  • 基金:国家自然科学基金项目(41363007)资助
  • 语种:中文;
  • 页:STXZ201903009
  • 页数:7
  • CN:03
  • ISSN:21-1148/Q
  • 分类号:74-80
摘要
以国家级自然保护区贵州威宁草海为研究对象,利用稳定同位素技术,分析草海湿地食物链碳(δ~(13)C)、氮(δ15N)同位素特征,计算各生物类群营养级别,建立草海食物链结构。结果表明:草海湿地生态系统中δ13C比值范围为-27.56‰~-13.25‰(均值±标准差,-21.52‰±3.61‰);δ15N值范围为0.32‰~15.14‰(8.69‰±3.92‰),δ13C与δ15N呈显著负相关(r=-0.423,P<0.01)。草海湿地食物链中消费者营养级处于0.8~3.7,其中:鱼类营养级为0.8~2.5,相对其他地区偏低;底栖动物营养级为2.0~2.8,鸟类营养级为1.0~3.7。鱼类和底栖动物的营养级别均表现为肉食性>杂食性>植食性。草海食物链结构复杂,主要的两条碳流动途径分别为:底泥和浮游植物→浮游动物→鱼类→鸟类以及水生植物→鱼类和鸟类。
        To clarify the trophic level of each biological group and examine the food chain in Caohai,a National Nature Reserve,the characteristics stable carbon( δ~(13) C) and nitrogen( δ15 N) isotope of aquatic organisms in Caohai were analyzed. The δ~(13) C values in Caohai ecosystem ranged from-27.56‰ to-13.25‰( Mean ±SD:-21.52‰ ± 3.61‰) and the δ15 N varied from 0.32‰ to 15.14‰( Mean±SD: 8.69‰±3.92‰). There was a significant negative correlation between δ~(13) C and δ15 N values( r =-0.423,P<0.01). The trophic levels in different biological groups ranged from 0.8 to 3.7: fishes,0.8-2.5; benthonic animals,2.0-2.8; birds,1.0-3.7. Moreover,the trophic levels in fishes and benthonic animals were different in different feeding habits,with an order of carnivorous>omnivorous>phytophagous. The food chain in Caohai had two transmitting carbon pathways: sediment/phytoplankton → zooplankton → fish → birds,and hydrophyte→ fish → birds.
引文
蔡德陵,李红燕,唐启升,等.2005.黄东海生态系统食物网连续营养谱的建立:来自碳氮稳定同位素方法的结果.中国科学:生命科学,35(2):123-130.
    丁薇,陈敬安,杨海全,等.2016.云南抚仙湖主要入湖河流有机碳来源辨识.地球与环境,44(3):290-296.
    丁喜桂,叶思源,王吉松.2011.黄河三角洲湿地土壤、植物碳氮稳定同位素的组成特征.海洋地质前沿,27(2):66-71.
    杜森,周岩岩,张黎.2017.应用碳氮同位素技术研究重金属在大亚湾食物网中的累积.应用生态学报,28(7):2327-2338.
    何天容,曾玲霞,许议元,等.2018.贵州草海水生植物汞分布及其对沉积物汞的响应特征.生态学杂志,37(3):793-800.
    简敏菲,游海,倪才英.2006.鄱阳湖饶河段重金属污染水平与迁移特性.湖泊科学,18(2):127-133.
    姜亚洲,林楠,袁兴伟,等.2015.基于碳、氮稳定同位素技术研究象山港虾虎鱼类营养生态位.生态学杂志,34(6):1579-1585.
    荆敏.2017.富营养化水库食物链中汞和脂肪酸的积累模式(硕士学位论文).太原:太原理工大学.
    李斌,徐丹丹,王志坚,等.2013.三峡库区小江库湾鱼类食物网的稳定C、N同位素分析.生态学报,33(20):6704-6711.
    李荣昌.2018.草海自然保护区环境问题探析.南方农业,12(2):123-124
    唐金刚,李苇洁,周传艳.2014.高原湿地草海水生植物多样性变化研究.广西植物,34(5):601-607.
    田甲申,鹿志创,罗耀明,等.2015.应用碳氮稳定同位素研究斑海豹的食性.生态学杂志,34(12):3453-3458.
    万祎,胡建英,安立会,等.2005.利用稳定氮和碳同位素分析渤海湾食物网主要生物种的营养层次.科学通报,50(7):708-712.
    王荦,杜双成,杨婷越,等.2017.应用稳定同位素技术评价大连近岸海域食物网营养结构.生态学杂志,36(5):1452-1457.
    王玄,江红星,张亚楠,等.2017.基于稳定同位素技术的辽宁双台河口保护区黑嘴鸥(Larus saundersi)食性研究.生态学报,37(6):1796-1804.
    徐军,张敏,谢平.2010.氮稳定同位素基准的可变性及对营养级评价的影响.湖泊科学,22(1):8-20.
    许议元,曾玲霞,何天容,等.2018.贵州草海底栖动物汞分布及其对沉积物汞的响应特征.环境科学,39(6):2953-2962.
    杨月琴,易现峰,李宁.2009.利用稳定同位素技术分析青海湖优势水鸟的营养级结构.动物学研究,30(4):418-422.
    张金美,张萌,匡武名,等.2016.水华条件下鄱阳湖区植物叶片碳氮同位素特性.环境科学研究,29(5):708-715.
    朱玉珍,何天容,高钊,等.2016.贵州草海沉积物重金属分布及其对底栖动物群落的影响.中国环境科学,36(6):1859-1866.
    Abeysinghe KS,Qiu GL,Goodale E,et al.2017.Mercury flow through an Asian rice-based food web.Environmental Pollution,229:219-228.
    Akin S,Winemiller K.2008.Body size and trophic position in a temperate estuarine food web.Acta Oecologica,33:144-153.
    Durand J.2008.Sacramento-San Joaquin Delta Regional Ecosystem Restoration Implementation Plan:Delta Foodweb Conceptual Model.
    Feng JX,Gao QF,Dong SL,et al.2014.Trophic relationships in a polyculture pond based on carbon and nitrogen stable isotope analyses:A case study in Jinghai Bay,China.Aquaculture,429-429:254-264.
    Guzzo MM,Haffner GD,Sorge S,et al.2011.Spatial and temporal variabilities ofδ13C andδ15N within lower trophic levels of a large lake:Implications for estimating trophic relationships of consumers.Hydrobiologia,675:41-53.
    Jardine TD,Kidd KA,Fisk AT.2006.Applications,considerations,and sources of uncertainty when using stable isotope analysis in ecotoxicology.Environmental Science&Technology,40:7501-7511.
    Lange G,Haynert K,Dinter T,et al.2018.Adaptation of benthic invertebrates to food sources along marine-terrestrial boundaries as indicated by carbon and nitrogen stable isotopes.Journal of Sea Research,131:12-21.
    Martínez del Rio C,Wolf N,Carleton SA,et al.2009.Isotopic ecology ten years after a call for more laboratory experiments.Biological Reviews of the Cambridge Philosophical Society,84:91-111.
    Mizutani H,Kabaya Y,Moors PJ,et al.1991.Nitrogen isotope ratios identify deserted seabird colonies.Auk,108:960-964.
    Quan W,Shi L,Chen Y.2010.Stable isotopes in aquatic food web of an artificial lagoon in the Hangzhou Bay,China.Chinese Journal of Oceanology and Limnology,28:489-497.
    Ridzuan DS,Rawi CSM,Hamid SA,et al.2017.Determination of food sources and trophic position in Malaysian tropical highland streams using carbon and nitrogen stable isotopes.Acta Ecologica Sinica,37:97-104.
    Wang MH,Wang YY,Wang J,et al.2011.Proteome profiles in medaka(Oryzias melastigma)liver and brain experimentally exposed to acutein organic mercury.Aquatic Toxicology,103:129-139.
    Wangtzen KM,Machado FA,Voss M.2002.Seasonal isotopic shifts in fish of the Pantanal wetland,Brazil.Aquatic Sciences,64:239-251.
    Xu X,Zhang Q,Wang WX.2016.Linking mercury,carbon,and nitrogen stable isotopes in Tibetan biota:Implications for using mercury stable isotopes as source tracers.Scientific Reports,6:25394.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700