基于双参数威布尔分布的高强度铝合金材料腐蚀损伤分布动力学规律研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamic Law of Corrosion Damage Distribution of High Strength Aluminum Alloy Based on Two-parameter Weibull Distribution
  • 作者:张登 ; 李孟思
  • 英文作者:ZHANG Deng;LI Meng-si;Aviation Key Laboratory of Science and Technology on Structural Corrosion Prevention and Control China Special Vehicle Research Institute;
  • 关键词:铝合金 ; 双参数威布尔分布 ; 腐蚀损伤
  • 英文关键词:aluminum alloy;;two-parameter Weibull distribution;;corrosion damage
  • 中文刊名:JSCX
  • 英文刊名:Equipment Environmental Engineering
  • 机构:中国特种飞行器研究所结构腐蚀防护与控制航空科技重点实验室;
  • 出版日期:2019-07-25
  • 出版单位:装备环境工程
  • 年:2019
  • 期:v.16
  • 语种:中文;
  • 页:JSCX201907008
  • 页数:5
  • CN:07
  • ISSN:50-1170/X
  • 分类号:35-39
摘要
目的研究高强度铝合金材料腐蚀损伤分布的动力学规律。方法通过统计高强度铝合金材料的蚀坑深度和直径,采用双参数威布尔分布进行拟合,提出以双参数威布尔分布中的两个参数α、β作为高强度铝合金材料腐蚀损伤分布的表征量,建立α、β随腐蚀时间增长的多种数学模型。结果α随腐蚀时间的增长而减小,β随腐蚀时间的增长而增大,并且分布参数均能很好地符合一阶指数函数模型。结论与实际蚀坑分布增长物理现象比较,α、β的变化趋势能够揭示出蚀坑分布随时间增长的变化过程,并且腐蚀损伤分布动力学规律能很好地符合一阶指数函数模型。
        Objective To study the distribution kinetics of corrosion damage in high strength aluminum alloy. Methods By calculating the corrosion pit depth and diameter of high-strength aluminum alloy materials and fitting the two-parameter Weibull distribution, two parameters α and β in the two-parameter Weibull distribution were proposed as the characterization quantities of the corrosion damage distribution of high-strength aluminum alloy materials, and a variety of mathematical models of α and βwith the increase of corrosion time were established. Results α decreased with the increase of corrosion time, while β increased with the increase of corrosion time, and the distribution parameters can well conform to the first-order exponential function model. Conclusion Compared with the physical phenomenon of actual pit distribution growth, the change trend of α and β can reveal the change process of pit distribution growth with time, and the dynamic law of corrosion damage distribution can well conform to the first-order exponential function model.
引文
[1]张丹峰,谭晓明,戚佳睿.飞机结构件腐蚀监测研究[J].环境技术,2017,35(4):32-34.
    [2]穆志韬,熊玉平.高强度铝合金的腐蚀损伤分布规律研究[J].机械工程材料,2002,26(4):14-17.
    [3]李旭东,穆志韬,刘治国.航空高强度LY12CZ铝合金腐蚀剩余强度预测[J].装备环境工程,2013,10(6):1-4.
    [4]陈定海,穆志韬,朱做涛,等.腐蚀坑对疲劳裂纹扩展的影响分析[J].装备环境工程,2012,9(4):4-7.
    [5]李旭东,张黎明,汪振兴,等.预腐蚀LD2铝合金腐蚀坑向裂纹转化研究[J].环境技术,2013(6):10-13.
    [6]李旭东,刘治国,贾明明,等.基于可靠度的LY12CZ铝合金预腐蚀剩余强度预测[J].环境技术,2013(2):19-22.
    [7]CAVANAUGH M K,BUCHHEIT R G,BIRBILIS N.Modeling the Environmental Dependence of Pit Growth Using Neural Network Approaches[J].Corrosion Science,2010(9):3070-3077.
    [8]PAGLIA C S,BUCHHEIT R G.A Look in the Corrosion of Aluminum Alloy Friction Stir Welds[J].Scripta Materialia,2008(3):383-387.
    [9]CRESCENTE De M A,BORNSTEIN N S.Formation and Reactivity Thermodynamics of Sodium Sulfate With Gas Turbine Alloys[J].Corrosion,1968,24(5):127-133.
    [10]TURNBULL A.Modeling of the Chemistry and Electrochemistry in Cracks[J].Corrosion,2001,57(2):175-189.
    [11]TURNBULL A,ZHOU S.Electrochemical Crack Size Effect in Stress Corrosion Cracking and Corrosion Fatigue[J].Corrosion,2017(3):26-30
    [12]GENEL K.The Effect of Pitting on the Bending Fatigue Performance of High-strength Aluminum Alloy[J].Scripta Materialia.2007(8):297-300
    [13]CAIN T,BLAND L G,BIRBILIS N,et al.A Compilation of Corrosion Potentials for Magnesium Alloys[J].Corrosion,2014,70(10):1043-1051.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700