海藻糖脂的合成及应用前景
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis and applications of trehaloselipids
  • 作者:张博涵 ; 沈新乐 ; 胡燚 ; 唐苏苏
  • 英文作者:ZHANG Bohan;SHEN Xinle;HU Yi;TANG Susu;College of Biotechnology and Pharmaceutical Engineering,Nanjing Tech University;School of Pharmaceutical Sciences,Nanjing Tech University;
  • 关键词:海藻糖脂 ; 红球菌 ; 生物表面活性剂 ; 免疫疗法 ; 环境修复 ; 生物医药 ; 生物合成
  • 英文关键词:trehalose lipids;;Rhodococcus;;biosurfactants;;immunotherapy;;environmental remediation;;biomedicine;;biosynthesis
  • 中文刊名:SWJG
  • 英文刊名:Chinese Journal of Bioprocess Engineering
  • 机构:南京工业大学生物与制药工程学院;南京工业大学药学院;
  • 出版日期:2019-03-15
  • 出版单位:生物加工过程
  • 年:2019
  • 期:v.17
  • 基金:国家自然科学基金(21606129)
  • 语种:中文;
  • 页:SWJG201902007
  • 页数:7
  • CN:02
  • ISSN:32-1706/Q
  • 分类号:40-46
摘要
海藻糖脂是一类生物表面活性化合物,与化学表面活性剂相比,具有低毒、可生物降解、在极端条件下稳定性强、环境友好等优势,具有广泛的应用价值和前景。目前国内还没有大规模商业应用的实例,主要是生产成本高、产量低、产物成分复杂等因素导致。本文中,笔者主要介绍了海藻糖脂的制备方法,分析比较了各种方法的优势与问题,综述了海藻糖脂的性质及其在生物医学、食品、化妆品、生物修复和石油工业领域的应用前景。海藻糖脂由于其特有的性质,将在实际应用中,尤其是在生物医学工程领域方面的应用中有望得到进一步的发展。
        Trehalose lipids are glycolipid biosurfactants.In comparison to chemical surfactants,trehalose lipids have the advantages in lower toxicity,higher biodegradability,effectiveness at extremes of temperature,pH and salinity,environment-friendly,they have practical applications and prospects.However,the large-scale commercial success of trehalose lipids is currently scarce.Itis mainly due to the high cost,low yield and complexity of component of production.We introduce hereh the synthesis methods of trehalose lipids,and analyzetheir advantages and problems.We also summarize applications of trehalose lipids in the food,cosmetic,biomedical engineering,environmental protection and oil and petroleum industry.Finally,the advantages of trehalose lipids to other surfactant are highlighted,which enables an efficient development of trehalose lipids in their application,especially in biomedical engineering.
引文
[1] SHAO Z.Trehalolipids[M]//GLORIA S C.Biosurfactants-from genes to applications.Berlin:Springer Berlin Heidelberg,2011:121-143.
    [2] BRENNAN P J,NIKAIDO H.The envelope of mycobacteria[J].Ann Rev Biochem,1995,64(1):29-63.
    [3] CHATTERJEE D.The mycobacterial cell wall:structure,biosynthesis and sites of drug action[J].Curr Opin Chemi Biology,1997,1(4):579-588.
    [4] INDRIGO J,JRH R,ACTOR J K.Cord factor trehalose 6,6′-dimycolate (TDM) mediates trafficking events during mycobacterial infection of murine macrophages[J].Microbiology,2003,149(8):2049-2059.
    [5] RAJNI,RAO N,MEENA L S.Biosynthesis and virulent behavior of lipids produced by Mycobacterium tuberculosis:LAM and cord factor-an overview[J].Biotechnol Res Int,2011(12):274693.
    [6] TOUBIANA R,DAS B C,DEFAYE J,et al.étude du cord-factor et de ses analogues.:partie III.synthèse du cord-factor (6,6′-di-O-mycoloyl-α,α-tréhalose) et du 6,6′-di-O-palmitoyl-α,α-tréhalose[J].Carbohydr Res,1975,44(2):308-312.
    [7] NISHIZAWA M,MINAGAWA R,GARCIA D M,et al.Syntheses and characterization of four diastereomers of trehalose-6,6′-dicorynomycolates (TD BH32)[J].Tetrahedron Lett,1994,35(32):5891-5894.
    [8] NISHIZAWA M,GARC A D M,MINAGAWA R,et al.Effective synthesis of four isomeric trehalose dicorynomycolates (TDCMs) and their immunoadjuvant activities[J].Syn Lett,1996,1996(5):452-454.
    [9] NISHIZAWA M,YAMAMOTO H,IMAGAWA H,et al.Efficient syntheses of a series of trehalose dimycolate (TDM)/trehalose dicorynomycolate (TDCM) analogues and their interleukin-6 level enhancement activity in mice sera[J].J Org Chem,2007,72(5):1627-1633.
    [10] SANKI A K,BOUCAU J,UMESIRI F E,et al.Design,synthesis and biological evaluation of sugar-derived esters,α-ketoesters and α-ketoamides as inhibitors for Mycobacterium tuberculosis antigen 85C[J].Mole Bio Sys,2009,5(9):945-956.
    [11] LIAV A,GOREN M B.A new synthesis of cord factors and analogs[J].Chem Phys Lipids,1980,27(4):345-352.
    [12] LIAV A,GOREN M B.An improved synthesis of 6-O-mycoloyl-and 6-O-corynomycoloyl-α,α-trehalose with observations on the permethylation analysis of trehalose glycolipids[J].Carbohydr Res,1986,155:229-235.
    [13] PAUL N K,TWIBANIRE J A K,GRINDLEY T B.Direct synthesis of maradolipids and other trehalose 6-monoesters and 6,6′-diesters[J].J Org Chem,2012,78(2):363-369.
    [14] PUECH V,CHAMI M,LEMASSU A,et al.Structure of the cell envelope of corynebacteria:importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane[J].Microbiology,2001,147(5):1365-1382.
    [15] TOKUMOTO Y,NOMURA N,UCHIYAMA H,et al.Structural characterization and surface-active properties of a succinoyl trehalose lipid produced by Rhodococcus sp.SD-74[J].J Oleo Sci,2009,58(2):97-102.
    [16] NIESCHER S,WRAY V,LANG S,et al.Identification and structural characterisation of novel trehalose dinocardiomycolates from n-alkane-grown Rhodococcus opacus 1CP[J].Appl Microbiol Biotechnol,2006,70(5):605-611.
    [17] PENG F,LIU Z,WANG L,et al.An oil-degrading bacterium:Rhodococcus erythropolis strain 3C-9 and its biosurfactants[J].J Appl Microbiol,2007,102(6):1603-1611.
    [18] TULEVA B,CHRISTOVA N,COHEN R,et al.Production and structural elucidation of trehalose tetraesters (biosurfactants) from a novel alkanothrophic Rhodococcus wratislaviensis strain[J].J Appl Microbiol,2008,104(6):1703-1710.
    [19] MARQU S A,PINAZO A,FARFAN M,et al.The physicochemical properties and chemical composition of trehalose lipids produced by Rhodococcus erythropolis 51T7[J].Chem Phys Lipids,2009,158(2):110-117.
    [20] TULEVA B,CHRISTOVA N,COHEN R,et al.Isolation and characterization of trehalose tetraester biosurfactants from a soil strain Micrococcus luteus BN56[J].Process Biochem,2009,44(2):135-141.
    [21] CHRISTOVA N,LANG S,WRAY V,et al.Production,structural elucidation and in vitro antitumor activity of trehalose lipid biosurfactant from Nocardia farcinica strain[J].J Microbiol Biotechnol,2015,25(4):439-447.
    [22] KRETSCHMER A,WAGNER F.Characterization of biosynthetic intermediates of trehalose dicorynomycolates from Rhodococcus erythropolis grown on n-alkanes[J].Biochim Biophys Acta,1983,753(3):306-313.
    [23] IMURA T,KAWAMURA D,MORITA T,et al.Production of sophorolipids from non-edible jatropha oil by Stamerella bombicola NBRC 10243 and evaluation of their interfacial properties[J].J Oleo Sci,2013,62(10):857-864.
    [24] ELAZZAZY A M,ABDELMONEIM T S,ALMAGHRABI O A.Isolation and characterization of biosurfactant production under extreme environmental conditions by alkali-halo-thermophilic bacteria from Saudi Arabia[J].Saudi J Biol Sci,2015,22(4):466-475.
    [25] ESPUNY M,EGJIDO S,MERCAD M,et al.Characterization of trehalose tetraester produced by a waste lube oil degrader Rhodococcus sp.51T7[J].Toxicol Environ Chem,1995,48(1-2):83-88.
    [26] ESPUNY M,EGIDO S,ROD N I,et al.Nutritional requirements of a biosurfactant producing strain Rhodococcus sp.51T7[J].Biotechnol Lett,1996,18(5):521-526.
    [27] 何海洋,游京晶,陆利霞,等.海藻糖脂生物表面活性剂发酵碳源优化[J].食品工业科技,2012,33(15):178-181.
    [28] UCHIDA Y,MISAWA S,NAKAHARA T,et al.Factors affecting the production of succinoyl trehalose lipids by Rhodococcus erythropolis SD-74 grown on n-alkanes[J].Agric Biol Chem,1989,53(3):765-769.
    [29] MUTALIK S R,VAIDYA B K,JOSHI R M,et al.Use of response surface optimization for the production of biosurfactant from Rhodococcus spp. MTCC 2574[J].Bioresour Technol,2008,99(16):7875-7880.
    [30] INABA T,TOKUMOTO Y,MIYAZAKI Y,et al.Analysis of genes for succinoyl trehalose lipid production and increasing production in Rhodococcus sp.strain SD-74[J].Appl Environ Microbiol,2013,79(22):7082-7090.
    [31] DOGAN I,PAGILLA K R,WEBSTER D A,et al.Expression of Vitreoscilla hemoglobin in Gordonia amarae enhances biosurfactant production[J].J Ind Microbiol Biotechnol,2006,33(8):693-700.
    [32] WOUDENBERG-VAN OOSTEROM M,VAN RANTWIJK F,SHELDON R A.Regioselective acylation of disaccharides in tert-butyl alcohol catalyzed by Candida antarctica lipase[J].Biotechnol Bioeng,1996,49(3):328-333.
    [33] PARK O J,KIM D Y,DORDICK J S.Enzyme-catalyzed synthesis of sugar-containing monomers and linear polymers[J].Biotechnol Bioeng,2000,70(2):208-216.
    [34] DEGN P,ZIMMERMANN W.Optimization of carbohydrate fatty acid ester synthesis in organic media by a lipase from Candida antarctica[J].Biotechnol Bioeng,2001,74(6):483-491.
    [35] HSIEH S W,LEE M R,TSAI C W,et al.Enzymatic synthesis,purification and identification of bioactive trehalose ester derivatives for health applications[J].Food Bioprod Process,2015,95:163-172.
    [36] 铁翠娟,寇秀芬,徐家立.固定化脂肪酶催化合成6,6′-海藻糖月桂酸酯[J].催化学报,2002,23(1):81-84.
    [37] 何海洋,陆利霞,姚丽丽,等.糖脂类生物表面活性剂的性质及其潜在应用进展[J].化工进展,2011,30(3):607-611.
    [38] LANG S,WAGNER F.Biological activities of biosurfactants[J].Surfact Sci Series,1993,48:251-268.
    [39] UCHIDA Y,TSUCHIYA R,CHINO M,et al.Extracellular accumulation of mono- and di-succinoyl trehalose lipids by a strain of Rhodococcus erythropolis grown on n-alkanes[J].Agric Biol Chem,1989,53(3):757-763.
    [40] KUYUKINA M S,IVSHINA I B,BAEVA T A,et al.Trehalolipid biosurfactants from nonpathogenic Rhodococcus actinobacteria with diverse immunomodulatory activities[J].New Biotechnol,2015,32(6):559-568.
    [41] RYLL R,KUMAZAWA Y,YANO I.Immunological properties of trehalose dimycolate (cord factor) and other mycotic acid-containing glycolipids:a review[J].Microbiol Immun,2001,45(12):801-811.
    [42] ROMáN V R,JENSEN K J,JENSEN S S,et al.Therapeutic vaccination using cationic liposome-adjuvanted HIV type 1 peptides representing HLA-supertype-restricted subdominant T cell epitopes:safety,immunogenicity,and feasibility in Guinea-Bissau[J].AIDS Res Human Retrov,2013,29(11):1504-1512.
    [43] KALLERUP R S,MADSEN C M,SCHI?TH M L,et al.Influence of trehalose 6,6′-diester (TDX) chain length on the physicochemical and immunopotentiating properties of DDA/TDX liposomes[J].Eur J Pharm Biopharm,2015,90:80-89.
    [44] 张庆,滕俊江,周如金,等.富马酸海藻糖甲酯的合成及抑菌活性研究[J].湖北大学学报(自然科学版),2009,31(1):68-70.
    [45] 张庆,曾霞,周如金,等.新型食品防腐剂富马酸海藻糖甲酯的抗菌特性研究[J].食品研究与开发,2010,31(5):15-19.
    [46] 曾霞,张庆,周如金,等.富马酸海藻糖甲酯的防霉和抗氧化性能研究[J].食品科技,2010,35(6):262-264.
    [47] 森角裕平,小林达弥,柴田雅史.海藻糖脂肪酸酯组合物:104135995A[P].2014-11-05.
    [48] CHRISTOFI N,IVSHINA I.Microbial surfactants and their use in field studies of soil remediation[J].J Appl Microb,2002,93(6):915-929.
    [49] BAJAJ A,MAYILRAJ S,MUDIAM M K R,et al.Isolation and functional analysis of a glycolipid producing Rhodococcus sp. strain IITR03 with potential for degradation of 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT)[J].Bioresour Technol,2014,167:398-406.
    [50] HARVEY S,ELASHVILI I,VALDES J J,et al.Enhanced removal of Exxon Valdez spilled oil from Alaskan gravel by a microbial surfactant[J].Biotechnology,1990,8(3):228-230.
    [51] 张晓华,姜岩,岳希权,等.生物表面活性剂驱油研究进展[J].化工进展,2016,35(7):2033-2040.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700