C/C-SiC复合材料在制动过程中的摩擦磨损性能及热应力仿真分析(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Tribological properties and thermal-stress analysis of C/C-SiC composites during braking
  • 作者:陈冠一 ; 李专 ; 肖鹏 ; 欧阳曦 ; 马文杰 ; 李鹏涛 ; 李金伟 ; 李杨
  • 英文作者:Guan-yi CHEN;Zhuan LI;Peng XIAO;Xi OUYANG;Wen-jie MA;Peng-tao LI;Jin-wei LI;Yang LI;National Key Laboratory of Science and Technology for National Defence on High-strength Structure Materials,Central South University;State Key Laboratory of Powder Metallurgy, Central South University;Institute of Science, Inner Mongolia First Machinery Group Co., Ltd.;
  • 关键词:C/C-SiC复合材料 ; 制动 ; 摩擦磨损行为 ; 温度场 ; 热应力场
  • 英文关键词:C/C-SiC composites;;brake;;tribological behavior;;temperature field;;thermal-stress field
  • 中文刊名:ZYSY
  • 英文刊名:中国有色金属学报(英文版)
  • 机构:中南大学轻质高强结构材料国防科技重点实验室;中南大学粉末冶金国家重点实验室;内蒙古第一机械制造(集团)有限公司科研所;
  • 出版日期:2019-01-15
  • 出版单位:Transactions of Nonferrous Metals Society of China
  • 年:2019
  • 期:v.29
  • 基金:Project(51575536)supported by the National Natural Science Foundation of China;; Project(2016YFB0301403)supported by the National Key Research and Development Program of China;; Project(2017zzts435)supported by Graduate Degree Thesis Innovation Foundation of Central South University,China
  • 语种:英文;
  • 页:ZYSY201901013
  • 页数:9
  • CN:01
  • ISSN:43-1239/TG
  • 分类号:129-137
摘要
为了研究C/C-SiC复合材料的摩擦磨损性能及制动过程中的热应力行为,对C/C-SiC复合材料进行模拟高铁制动条件下的自对偶摩擦磨损测试,同时在ANSYS有限元模拟软件中对制动过程的温度及结构场进行耦合。结果显示,C/C-SiC复合材料在制动过程中表现出优异的静摩擦因数(0.68)以及动摩擦因数(平均值为0.36);摩擦面的最高温度为445℃。模拟的温度场结果显示,摩擦面的最高温度为463℃。模拟热应力场结果显示,制动过程中摩擦面上的最大热应力为11.5 MPa。摩擦面上的温度与热应力分布呈相似趋势。
        The tribological properties and thermal-stress behaviors of C/C-SiC composites during braking were investigated aiming to simulate braking tests of high-speed trains. The temperature and structural fields of C/C-SiC composites during braking were fully coupled and simulated with ANSYS software. The results of tribological tests indicated that the C/C-SiC composites showed excellent static friction coefficient(0.68) and dynamic friction coefficient(average value of 0.36). The highest temperature on friction surface was 445 ℃. The simulated temperature field showed that the highest temperature which appeared on the friction surface during braking was about 463 ℃. Analysis regarding thermal-stress field showed that the highest thermal-stress on friction surface was 11.5 MPa. The temperature and thermal-stress distributions on friction surface during braking showed the same tendency.
引文
[1]KRENKEL W,HENKE T.Design of high performance CMC brake disks[J].Key Engineering Materials,1998,164:421-424.
    [2]XIAO Peng,LI Zhuan,XIONG Xiang.Microstructure and tribological properties of 3D needle-pinched C/C-SiC brake composites[J].Solid State Sciences,2010,12(4):617-623.
    [3]LI Zhuan,XIAO Peng,XIONG Xiang,ZHU Su-hua.Tribological characteristics of C/C-SiC braking composites under dry and wet conditions[J].Transactions of Nonferrous Metals Society of China,2008,18(5):1071-1075.
    [4]KRENKEL W,BERNDT F.C/C-SiC composites for space applications and advanced friction systems[J].Materials Science and Engineering A,2005,412(1-2):177-181.
    [5]LI Zhuan,XIAO Peng,ZHANG Ben-gu,LI Yang,LU Yu-hai.Preparation and tribological properties of C/C-SiC brake composites modified by in situ grown carbon nanofibers[J].Ceramics International,2015,41(9):11733-11740.
    [6]LI Yang,XIAO Peng,LUO Heng,ALMEIDA R S M,LI Zhuan,ZHOU Wei,BRüCKNER A,REICHERT F,LANGHOF N,KRENKEL W.Fatigue behavior and residual strength evolution of2.5D C/C-SiC composites[J].Journal of the European Ceramic Society,2016,36(16):3977-3985.
    [7]JIANG Lan,JIANG Yan-li,YU Liang,SU Nan,DING You-dong.Thermal analysis for brake disks of SiC/6061 Al alloy co-continuous composite for CRH3 during emergency braking considering airflow cooling[J].Transactions of Nonferrous Metals Society of China,2012,22(11):2783-2791.
    [8]HUSSAIN H,KHANDWAWALA A I.Application of transient thermal analysis for three feeder design optimization for sand casting[J].International Journal of Mechanical Engineering and Technology,2013,4(6):241-248.
    [9]DUFRéNOY P,WEICHERT D.A thermomechanical model for the analysis of disc brake fracture mechanisms[J].Journal of Thermalstresses,2003,26(8):815-528.
    [10]COLIN F,FLOQUET A,PLAY D.Thermal contact simulation in2-D and 3-D mechanisms[J].ASME Journal of Tribology,1988,110(2):247-252.
    [11]BELHOCINE A,BOUCHETARA M.Thermal analysis of a solid brake disc[J].Applied Thermal Engineering,2012,32(1):59-67.
    [12]BELHOCINE A,BOUCHETARA M.Structural and thermal analysis of automotive disc brake rotor[J].Archive of Mechanical Engineering,2014,61(1):89-113.
    [13]XIA Ming.Thermo-mechanical coupled particle model for rock[J].Transactions of Nonferrous Metals Society of China,2015,25(7):2367-2379.
    [14]LI Zhuan,XIAO Peng,ZHANG Ben-gu,LI Yang,LU Yu-hai,ZHUSu-hua.Preparation and dynamometer tests of 3D needle-punched C/C-SiC brake composites for high-speed and heavy-duty brake systems[J].International Journal of Applied Ceramic Technology,2016,13(3):423-433.
    [15]JAISWAL R,JHA A R,KARKI A,DAS D,JAISWAL P,RAJHADIA S,BASNET A.Structural and thermal analysis of disc brake using Solidworks and ANSYS[J].International Journal of Mechanical Engineering and Technology,2016,7(1):67-77.
    [16]CHOI J H,LEE I.Finite element analysis of transient thermoelastic behavior in disk brakes[J].Wear,2004,257(1-2):47-58.
    [17]LEI Bao-ling,YI Mao-zhong,XU Hui-juan.Simulation of temperature field of carbon/carbon composite during braking[J].The Chinese Journal of Nonferrous Metals,2008,18(3):377-382.(in Chinese)
    [18]ZHANG Jian,XIA Chang-gao.Research of the transient temperature field and friction properties on disc brakes[J].Advanced Materials Research,2013,756-759:4331-4335.
    [19]WANG Bu-xuan.Engineering heat and mass transfer[M].Beijing:Science Press,1998:139-226.(in Chinese)
    [20]KIM D J,LEE Y M,PARK J S,SEOK C S.thermal-stress analysis for a disk brake of railway vehicles with consideration of the pressure distribution on a friction surface[J].Materials Science and Engineering A,2008,483(1):456-459.
    [21]FAN Shang-wu,ZHANG Li-tong,XU Yong-dong,CHENG Lai-fei,LOU Jian-jun,ZHANG Jun-zhan,YU Lin.Microstructure and properties of 3D needle-punched carbide brake materials[J].Composites Science&Technology,2007,67(11-12):2390-2398.
    [22]KRENKEL W.Handbook of ceramic composites[M].Heidelberg:Springer,2004:117-148.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700