窖水中微生物降解污染物的关键细菌
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Key Bacteria for the Microbial Degradation of Pollutants in Cellar Water
  • 作者:杨浩 ; 杨晓妮 ; 张国珍 ; 王宝山 ; 张翔 ; 李健
  • 英文作者:YANG Hao;YANG Xiao-ni;ZHANG Guo-zhen;WANG Bao-shan;ZHANG Xiang;LI Jian;School of Environmental and Municipal Engineering,Lanzhou Jiaotong University;Engineering Research Center for Cold and Arid Regions Water Resource Comprehensive Utilization,Ministry of Education;College of Natural Resources and Environment,Gansu Agricultural University;
  • 关键词:集雨窖水 ; 细菌群落组成 ; 群落基因功能 ; 微生物共现性关联网络 ; 关键细菌
  • 英文关键词:cellar water;;community complexity;;microbial community functional gene;;association network of microbial co-occurrence;;key bacteria
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:兰州交通大学环境与市政工程学院;寒旱地区水资源综合利用教育部工程研究中心;甘肃农业大学资源与环境学院;
  • 出版日期:2018-04-24 13:38
  • 出版单位:环境科学
  • 年:2018
  • 期:v.39
  • 基金:国家自然科学基金项目(51768031,51368029)
  • 语种:中文;
  • 页:HJKZ201810045
  • 页数:12
  • CN:10
  • ISSN:11-1895/X
  • 分类号:376-387
摘要
为探究以氮、磷及有机物污染为主要特征的、窖水中参与污染物降解的关键细菌及它们之间潜在的相关关系,基于16S rRNA的微生物组学截面数据,分析了窖水中细菌群落结构与功能及其与水质因子间的相关性,并通过微生物物种的同现或相关种间作用推断模型,构建了7个微生物菌属间的共现性关联网络.结果表明,窖水中存在具有相对特定生态功能的细菌,进行着诸多活跃的与新陈代谢功能基因相关的代谢活动;窖水微生物类群共现性关联网络中大部分节点的菌属营互利共生类型的生态关系;Lacibacter、Arthrobacter、Candidatus Protochlamydia、Methylocaldum、Sulfuritalea、Mycobacterium、Aquirestis、Rhodobacter、Methylotenera等菌属拥有较高的点度中心度;较强的互作关系发生在Sulfuritalea-Rhodobacter、Azospirillum-Rhodobacter、Methylocaldum-Rhodobacter、Arthrobacter-Rhodobacter、Rhodoplanes-Rhodobacter、Candidatus Protochlamydia-Rhodobacter、Methylotenera-Rhodobacter、Rhodobacter-Aquirestis、Mycobacterium-Rhodobacter、PlanctomycesCandidatus Solibacter、Planctomyces-Legionella、Hymenobacter-Adhaeribacter、Luteolibacter-Crenothrix之间.综合分析节点微生物相关性、点度中心度及菌属间的互作强度,认为Rhodobacter、Methylocaldum、Methylotenera、Acinetobacter、Novosphingobium、Planctomyces、Hymenobacter、Luteolibacter为参与窖水污染物微生物降解的关键细菌,Rhodobacter为关键细菌的代表属.研究结果加深了对窖水中污染物微生物降解机制的认识.
        The study aimed to identify the key bacteria and the potential interactions among these bacteria during the degradation of pollutants in cellar water,The main pollution characteristics were nitrogen,phosphorus and organic pollution. The structure and function of the bacterial community and its correlation with water quality variables were analyzed. A network of seven associations of microbial co-occurrence was set up,based on 16 S rRNA and the model for inferring co-occurrence or interspecific interactions of microbial species. This showed that there were a large number of microorganisms with relatively specific ecological functions in the cellar water,and that many metabolic activities were involved. The ecological relationships of most bacteria in the association network were a form of mutualism. The most prominent genera included Lacibacter,Arthrobacter,Candidatus Protochlamydia,Methylocaldum,Sulfuritalea,Mycobacterium,Aquirestis,Rhodobacter,and,Methylotenera. The strong associations were observed between following bacteria: Sulfuritalea-Rhodobacter, Azospirillum-Rhodobacter, Methylocaldum-Rhodobacter, Arthrobacter-Rhodobacter, RhodoplanesRhodobacter, Candidatus Protochlamydia-Rhodobacter, Methylotenera-Rhodobacter, Rhodobacter-Aquirestis, MycobacteriumRhodobacter,Planctomyces-Candidatus Solibacter,Planctomyces-Legionella,Hymenobacter-Adhaeribacter,and Luteolibacter-Crenothrix.It was considered that Rhodobacter,Methylocaldum,Methylotenera,Acinetobacter,Novosphingobium,Planctomyces,Hymenobacter,and Luteolibacter were the key bacteria involved in microbial degradation of cellar water pollutants, and Rhodobacter was the representative genus of the key bacteria. The authors concluded that the research results improved understanding of the microbial degradation mechanism of pollutants in cellar water.
引文
[1]冯帅,李叙勇,邓建才.平原河网典型污染物生物降解系数的研究[J].环境科学,2016,37(5):1724-1733.Feng S,Li X Y,Deng J C.Biodegradation coefficients of typical pollutants in the plain rivers network[J].Environmental Science,2016,37(5):1724-1733.
    [2]Ostroumov S A.Polyfunctional role of biodiversity in processes leading to water purification:current conceptualizations and concluding remarks[J].Hydrobiologia,2002,469(1-3):203-204.
    [3]Lupatini M,Suleiman A K A,Jacques R J S,et al.Network topology reveals high connectance levels and few key microbial genera within soils[J].Frontiers in Environmental Science,2014,2:1-11.
    [4]Adam I K,Duarte M,Pathmanathan J,et al.Microbial communities in pyrene amended soil-compost mixture and fertilized soil[J].AMB Express,2017,7:7.
    [5]王斌,陈庆彩,胡晓珂.微生物降解芘过程中的关键细菌[J].微生物学报,2017,57(6):856-866.Wang B,Chen Q C,Hu X K.Key bacteria during microbial degradation of pyrene[J].Acta Microbiologica Sinica,2017,57(6):856-866.
    [6]Trosvik P,de Muinck E J.Ecology of bacteria in the human gastrointestinal tract-identification of keystone and foundation taxa[J].Microbiome,2015,3:44.
    [7]Fisher C K,Methta P.Identifying keystone species in the human gut microbiome from metagenomic timeseries using sparse linear regression[J].PLo S One,2014,9(7):e102451.
    [8]Shi S J,Nuccio E E,Shi Z J,et al.The interconnected rhizosphere:high network complexity dominates rhizosphere assemblages[J].Ecology Letters,2016,19(8):926-936.
    [9]Dethlefsen L,Eckburg P B,Bik E M,et al.Assembly of the human intestinal microbiota[J].Trends in Ecology&Evolution,2006,21(9):517-523.
    [10]Marino S,Baxter N T,Huffnagle G B,et al.Mathematical modeling of primary succession of murine intestinal microbiota[J].Proceedings of the National Academy of Sciences of the United States of America,2014,111(1):439-444.
    [11]Fuhrman J A.Microbial community structure and its functional implications[J].Nature,2009,459(7244):193-199.
    [12]Ju F,Xia Y,Guo F,et al.Taxonomic relatedness shapes bacterial assembly in activated sludge of globally distributed wastewater treatment plants[J].Environmental Microbiology,2014,16(8):2421-2432.
    [13]Faust K,Raes J.Microbial interactions:from networks to models[J].Nature Reviews Microbiology,2012,10(8):538-550.
    [14]Barberán A,Bates S T,Casamayor E O,et al.Using network analysis to explore co-occurrence patterns in soil microbial communities[J].The ISME Journal,2012,6(2):343-351.
    [15]Fuhrman J A,Cram J A,Needham D M.Marine microbial community dynamics and their ecological interpretation[J].Nature Reviews Microbiology,2015,13(3):133-146.
    [16]Molloy S.Environmental microbiology:disentangling syntrophy[J].Nature Reviews Microbiology,2014,12(1):7.
    [17]Hibbing M E,Fuqua C,Parsek M R,et al.Bacterial competition:surviving and thriving in the microbial jungle[J].Nature Reviews Microbiology,2010,8(1):15-25.
    [18]Zhou J Z,Deng Y,Luo F,et al.Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2[J].MBio,2011,2(4):e00122-11.
    [19]Vályi K,Mardhiah U,Rillig M C,et al.Community assembly and coexistence in communities of Arbuscular mycorrhizal fungi[J].The ISME Journal,2016,10(10):2341-2351.
    [20]Comte J,del Giorgio P A.Linking the patterns of change in composition and function in bacterioplankton successions along environmental gradients[J].Ecology,2010,91(5):1466-1476.
    [21]Baho D L,Peter H,Tranvik L J.Resistance and resilience of microbial communities-temporal and spatial insurance against Perturbations[J].Environmental Microbiology,2012,14(9):2283-2292.
    [22]Berga M,Székely A J,Langenheder S.Effects of disturbance intensity and frequency on bacterial community composition and function[J].PLo S One,2012,7(5):e36959.
    [23]李晶,刘玉荣,贺纪正,等.土壤微生物对华宁胁迫的响应机制[J].环境科学学报,2013,4(33):959-967.Li J,Liu Y R,He J Z,et al.Insights into the responses of soil microbial community to the environmental disturbances[J].Acta Scientiae Circumstantiae,2013,4(33):959-967.
    [24]杨浩,张国珍,杨晓妮,等.16S rRNA高通量测序研究集雨窖水中微生物群落结构及多样性[J].环境科学,2017,4(38):1704-1716.Yang H,Zhang G Z,Yang X Y,et al.Microbial community structure and diversity in cellar water by 16s rrna high-throughput sequencing[J].Environmental Science,2017,4(38):1704-1716.
    [25]Faust K,Lahti L,Gonze D,et al.Metagenomics meets time series analysis:unraveling microbial community dynamics[J].Current Opinion in Microbiology,2015,25:56-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700