后驱全电独立驱动-制动电动车横摆稳定性控制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Yaw Stability Control of Electric Independent Driving and Braking Electric Vehicles with Rear Driving
  • 作者:杨坤 ; 解来卿 ; 王杰 ; 谭迪 ; 张学义 ; 刘吉顺
  • 英文作者:YANG Kun;XIE Laiqing;WANG Jie;TAN Di;ZHANG Xueyi;LIU Jishun;School of Transportation and Vehicle Engineering,Shandong University of Technology;State Key Laboratory of Automotive Safety and Energy,Tsinghua University;IAT Automobile Technology Corporation Limited;
  • 关键词:独立驱动-制动电动车 ; 电子机械制动 ; 横摆稳定性控制 ; 全电耦合制动
  • 英文关键词:electric independent driving and braking electric vehicle;;electro-mechanical brake;;yaw stability control;;electric coupled brake
  • 中文刊名:XAJT
  • 英文刊名:Journal of Xi'an Jiaotong University
  • 机构:山东理工大学交通与车辆工程学院;清华大学汽车安全与节能国家重点实验室;阿尔特汽车技术股份有限公司;
  • 出版日期:2018-10-18 10:00
  • 出版单位:西安交通大学学报
  • 年:2019
  • 期:v.53
  • 基金:国家自然科学基金资助项目(51605265,51775320);; 山东省重点研发计划资助项目(2018GGX105010)
  • 语种:中文;
  • 页:XAJT201901006
  • 页数:8
  • CN:01
  • ISSN:61-1069/T
  • 分类号:50-57
摘要
考虑基于传统液压制动的横摆稳定性控制(YSC)应用于全电独立驱动-制动电动车受到的限制和电子机械制动(EMB)应用于电动车的优势,提出了基于全电耦合制动和遗传PID算法的YSC控制方案,基于Matlab/Simulink搭建了仿真平台,通过阶跃路转向工况进行了验证。仿真结果表明:无YSC控制时,整车会因横摆角速度过大而失稳;有YSC控制时,整车横摆角速度被控制在目标值附近,整车未失稳。在控制过程中,EMB工作时间减少3.93s,占总工作时间的88.9%;最大制动力矩需求可减小495N·m,占总制动力矩的67.6%,这为优化EMB提供了途径。另外,控制过程中除减少了EMB能耗外,后左和后右轮毂电机系统可回收能量31.25kJ,节能效果显著。此项研究可为优化EMB制动和进一步减少电动车整车能耗提供新思路。
        The limitation of yaw stability control(YSC)for electric vehicles based on traditional hydraulic brake and the advantages of electromechanical brake(EMB)are analyzed.A YSC scheme based on electrically coupled brake and genetic PID algorithm is proposed.A simulation platform is built based on Matlab/Simulink.The proposed YSC and simulation platform are verified on step road and steering conditions.The vehicle is unstable due to the excessive yaw rate when there is no YSC control.The yaw rate can be controlled near the target value and the vehicle is stable when there is YSC control.During the control process,the working time of EMB is reduced by 3.93 s,which accounts for 88.9% of the total working time for brake,and the maximum brake torque requirement of EMB is reduced by 495N·m,which accounts for 67.6%of the total brake torque.These results provide a possibility for the optimization of EMB.The coupled brake can reduce the energy consumption and can recover energy up to 31.25 kJ.This research may provide new ideas for optimization of EMB and further reduction of vehicle energy consumption.
引文
[1]EHSANI M,GAO Y,EMADI A.Modern electric,hybrid electric,and fuel cell vehicles:fundamentals,theory,and design[M].2nd ed.Florida,USA:CRC,2010:1-18.
    [2]ANDY W,ANDREW V,ANDREW W,et al.The technology and economics of in-wheel motors:SAEPaper 2010-01-2307[R].New York,USA:SAE,2010.
    [3]ZHAO Yan-e,ZHANG Jianwu,HAN Xu.Development of a high performance electric vehicle with fourindependent-wheel drives:SAE Paper 2008-06-23[R].New York,USA:SAE,2008.
    [4]靳立强,王庆年,张缓缓,等.电动轮驱动电动汽车差速技术研究[J].汽车工程,2007,29(8):700-704.JIN Liqiang,WANG Qingnian,ZHANG Huanhuan,et al.A study on differential technology of in-wheelmotor drive EV[J].Automobile Engineering,2007,29(8):700-704.
    [5]王军年.电动轮独立驱动汽车差动助力转向技术研究[D].长春:吉林大学,2009.
    [6]EDOARDO S,FEDERICO C,MICHELE V,et al.Comparison of torque vectoring control strategies for a IWM vehicle:SAE Paper 2014-01-0860[R].New York,USA:SAE,2014.
    [7]SATOSHI M.Vehicle dynamics innovation with inwheel motor:SAE Paper 2011-39-7204[R].New York,USA:SAE,2011.
    [8]陈辛波,万钢,余卓平,等.独立悬架-电动轮模块的双横臂悬架机构设计[J].汽车工程,2004,26(5):513-515.CHEN Xinbo,WAN Gang,YU Zhuoping,et al.Design of double-wishbone suspension mechanism for independent suspension/in-wheel motor module[J].Automobile Engineering,2004,26(5):513-515.
    [9]童炜,侯之超.轮毂驱动电动汽车垂向特性与电机振动分析[J].汽车工程,2014,36(4):398-403.TONG Wei,HOU Zhichao.Analyses on the vertical characteristics and motor vibration of an electric vehicle with motor-in-wheel drive[J].Automobile Engineering,2014,36(4):398-403.
    [10]陈辛波,王弦弦,张擎宇,等.一种新型动力吸振式轮边驱动系统仿真分析[J].同济大学学报(自然科学版),2014,42(7):1101-1104.CHEN Xinbo,WANG Xianxian,ZHANG Qingyu,et al.Simulation and analysis of novel wheel drive system with dynamic damper[J].Journal of Tongji University(Natural Science),2014,42(7):1101-1104.
    [11]SATOSHI M.Vehicle dynamics innovation with inwheel motor:SAE Paper 2011-39-7204[R].New York,USA:SAE,2011.
    [12]张俊智,吕辰,李禹橦,等.电驱动乘用车制动能量回收技术发展现状与展望[J].汽车工程,2014,36(8):911-918.ZHANG Junzhi,LChen,LI Yutong,et al.Status quo and prospect of regenerative braking technology in electric cars[J].Automobile Engineering,2014,36(8):911-918.
    [13]MASAYUKI N,YASUHIRO K,SHINTARO O,et al.Development of regenerative cooperative braking system with conventional ESC:SAE Paper 2014-01-0331[R].New York,USA:SAE,2014.
    [14]杨坤.轻型汽车电子机械制动及稳定性控制系统研究[D].长春:吉林大学,2009.
    [15]李敏强,寇纪淞,林丹,等.遗传算法的基本理论与应用[M].北京:科学出版社,2002.
    [16]杨坤,高松,王杰,等.基于EMB的解耦式制动能量回收系统研究[J].汽车工程,2016,38(8):1072-1079.YANG Kun,GAO Song,WANG Jie,et al.A study of decoupled brake energy recovery system based on electro-mechanical brake[J].Automobile Engineering,2016,38(8):1072-1079.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700